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We show that the distributions of random coefficients in various discrete choice models 
are nonparametrically identified. Our identification results apply to static discrete choice 
models including binary logit, multinomial logit, nested logit, and probit models as well as 
to dynamic programming discrete choice models. In these models the only key condition we 
need to verify for identification is that the type specific model choice probability belongs to a 
class of functions that include analytic functions. Therefore our identification results are 
general enough to include most of commonly used discrete choice models in the literature. 
Our identification argument builds on insights from nonparametric specification testing. We 
find that the role of analytic function in our identification results is to effectively remove the 
full support requirement often exploited in other identification approaches. 
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I. Introduction 

 
Modelling heterogeneity in the preferences of economic agents has been of 

significant interests in both theoretical and empirical studies. Random coefficients 
in various models have been popularly used to address this individual heterogeneity. 
For recent work in discrete choice models with random coefficients including 
consumer demands, see (e.g.) Berry, Levinsohn, and Pakes (1995), Nevo (2001), 
Petrin (2002), Rossi, Allenby, and McCulloch (2005), Lewbel (2000), Burda, 
Harding, and Hausman (2008), McFadden and Train (2000), Briesch, Chintagunta, 
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and Matzkin (2010), Hoderlein, Klemela, and Mammen (2010), and Gautier and 
Kitamura (2013). However, identification studies on random coefficient models, 
which can be applied to various discrete choice models, still have been scarce with 
only a few exceptions. Moreover, there has been no unifying identification 
framework that can be generally applied to a variety of discrete choice models. In 
this paper we provide one such important result. 

By building on insights from nonparametric specification testing literature (e.g. 
Stinchcombe and White, 1998; Bierens, 1982, 1990) we show that the distributions 
of random coefficients in discrete choice models are nonparametrically identified if 
the type specific choice probability satisfies the property that the span of the type 
specific choice probabilities is weakly dense in the space of bounded and continuous 
functions. We then show that this identification condition is satisfied under three 
conditions. The first is that the type specific model choice probability is a real 
analytic function and the support of the distribution of covariates (e.g. product 
characteristics) is a nonempty open set. The second is that the function inside the 
type specific choice probability is monotonic in each element of the covariates vector 
that has random coefficients. This condition is trivially satisfied for static discrete 
choice models with index restrictions. Importantly we verify this monotonicity 
condition also holds for dynamic discrete choice models. Therefore, the second 
condition is not restrictive for most of the discrete choice models that are commonly 
used in the literature. The third and last condition is that we need at least one value 
of covariates such that the type specific choice probability does not depend on 
random coefficients at this particular value. To satisfy this condition we can 
typically let the covariates include the value of zero or re-center the covariates at 
zero. We find these three identifying conditions are satisfied for a class of discrete 
choice logit models including binary choice, multinomial choice, nested logit, and 
dynamic programming discrete choice models. The required condition of being a 
real analytic function is sufficient but not necessary. As an example we find that the 
distribution of random coefficients in the probit model is also nonparametrically 
identified but the probit function is not analytic. 

Our identification argument differs from the “identification at infinity” using a 
special covariate (e.g. Lewbel, 2000) and from the Cramer-Wold device (e.g. 
Ichimura and Thompson, 1997). Berry and Haile (2010) also provide an important 
identification result for discrete choice models but they require a special covariate, 
along with its full support condition while they do not use the logit structure. 
Moreover, their identification objects of interest do not include the distribution of 
random coefficients. In our opinion, the main concern with the special regressor is 
the requirement for large support. Large supports are sometimes acceptable but not 
often supported in typical datasets used in discrete choice estimation. Our study 
focuses on the nonparametric identification of distribution of random coefficients 
while our identification strategy explicitly resorts to the logit or the probit error 
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structure, as is common in empirical work.1 This parametric assumption on the 
distribution of the choice-specific errors does away with the need for large support 
assumptions. The entire distribution of random coefficients can be identified using 
only local variation in characteristics. The framework we use builds on Fox, Kim, 
Ryan, and Bajari (2012) and our framework extends to various discrete choice 
models including nested logit, probit, and dynamic discrete choices. To our 
knowledge, our work is the first to formally show nonparametric identification of 
random coefficients in dynamic programming discrete choice models. Our 
identification results are general enough to include most of commonly used discrete 
choice models and also can be used to develop a sieve approximation based 
estimator of the nonparametric distribution as in Fox, Kim, and Yang (2013). 
Although our identification results are not constructive, the results can be used to 
verify identification conditions for the consistency of the sieve approximation based 
estimator in Fox, Kim, and Yang (2013). 

The organization of the paper is as follows. In Section 2 we review various 
discrete models that fit into our identification framework. Section 3 develops the 
identification theorems. In Section 4 we show that the identification conditions are 
satisfied for various static discrete choice models. In Section 5 we show the 
identification conditions hold for the dynamic discrete choice model. In Section 6 
we conclude. Technical details are gathered in the Appendix. 

 
 
II. Discrete Choice Models with Random Coefficients 

 
Here we review various examples of discrete choice models with random 

coefficients to which our identification theorems in Section 3 are applied. These 
models are mostly commonly used in empirical studies. Readers who are familiar 
with the models can skip to Section 3 for our identification results. 

 
2.1. Logit Model with Individual Choices 

 
The motivating example is the multinomial logit discrete choice - including 

binary choice - with random coefficients where agents 1, ,i N= …  can choose 
between 1, ,j J= …  mutually exclusive alternatives and one outside option (e.g. 
outside good). The random coefficients logit model was first proposed by Boyd and 
Mellman (1980) and Cardell and Dunbar (1980). 

____________________ 
1 Other important identification studies in static discrete choice models include Briesch, 

Chintagunta, and Matzkin (2010), Chiappori and Komunjer (2009), Gautier and Kitamura (2013), 
and Fox and Gandhi (2010) but their modelling primitives are all different from our focus in this 
paper. 
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In the random coefficients model, the preference parameter iβ  is distributed by 
( )F β  and is independent of the exogenous covariates. The exogenous covariates 

for choice j  are in the 1K ×  vector ,i jx . We let ,1 ,( , , )i i i Jx x x′ ′= … . This 
distribution ( )F β  is the object of our interest. In the random utility model, agent 
i  of type iβ  has her utility of choosing alternative j  is equal to 

 

, , ,i j i j i i ju xα β ε′= + +  (1) 

 
where α  is the non-random constant term, so this model does not allow random 
coefficient for the constant term. Assume that ,i jε  is distributed as Type I extreme 
value including an outside good with utility ,0 ,0i iu ε=  and agents are the utility 
maximizers. Then the outcome variable ,i jy  is defined as 
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In the data we observe the conditional choice probability of the mixture ,( i jP y =  
1| )ix  and the logit model implies that 
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Our key question is whether we can identify ( )F β  from the observed ,( i jP y =  
1| )ix  and the type specific model choice probability ( , , )j ig x β α  in (2). In 
Section 4.1 we show ( )F β  is identified for this multinomial logit model. 

 
2.2. Nested Logit Model with Individual Choices 

 
We consider a nested logit model with the following random utility  
 

, , , , , , , ,i j l i j i i j l j i i j lu z xγ β ε′ ′= + +  

 
for 1, , jl L= …  choices per group j  with 1, ,j J= …  groups of choices and 

0j =  being the outside good ,0 ,0( )i iu ε=  where ,i jz  denotes the group specific 
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covariates while , ,i j lx  denotes the choice specific covariates. Let ,1( , ,i iz z′= …  

, )i Jz′  and 
1,1,1 ,1, , ,( , , , , )

Ji i i L i J Lx x x x′ ′ ′= … … . 
The nested logit model allows individual tastes to be correlated across products in 

each group. The error terms follow a generalized extreme value distribution 
(McFadden, 1978) of the form 

 

,
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j l j
j l
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∑ ∑  

 
where jρ  reflects the correlation between ,j lε  and ,j lε ′  as jρ =  

, ,1 [ , ]j l j lCorr ε ε ′−  for all l l′≠  and for the outside good 0 1L = , 0 1ρ = . 

The type specific choice probability of taking choice l  in the j  category at 

( , )i iz x  is 
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where 1( , , )Jβ β β′ ′= …  and 1( , , )Jρ ρ ρ= … . We have 

 

1, , , 1( 1| , ) ( , , , , ) ( ) ( ) ( )
Ji j l i i j l i i JP y z x g z x dF dF dFγ β βγ β α γ β β= = ∫ ∫" "   (3) 

 
where ( )Fγ γ  and ( )

j jFβ β ’s are distribution functions of γ  and jβ ’s, so we 
assume γ  and jβ ’s are independent each other while we allow distributions of 
components inside jβ ’s can be dependent. In Section 4.2 we show that the 
distributions of random coefficients ( )Fγ γ  and ( )

j jFβ β ’s are identified for this 
nested logit model. 
 
2.3. Probit Model with Binary Choice 

 
When ,i jε  in (1) follows a standard normal distribution with 1J =  and 

,0 0iu =  The model becomes a probit binary choice. We have 
 

,1 ,1 ,1( 1| ) ( ) ( )i i iP y x x dFα β β′= = Φ +∫  

 
where ( )Φ ⋅  denotes the CDF of standard normal. In Section 4.3 we show this 
probit model is also identified. 
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2.4. Logit Model with Aggregate Data 
 
The multinomial logit model can be used when data only on market shares js ’s 

are available but individual level data are not. We assume the utility of agent i  is 
 

, ,i j j i i ju xα β ε′= + +  

 
where β  is distributed by ( )F β . In this case the logit model implies 
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2.5. Dynamic Discrete Choice Models 

 
We consider the identification of distribution of random coefficients in dynamic 

discrete choice models (e.g. Rust 1987, 1994) - note that the original models of Rust 
do not have random coefficients. We assume that per period utility of agent i in a 
period t  from choosing action d D∈  is 

 

, , , , , ,i d t i d t i d tu x θ ε′= + . 

 
Here the error term is iid extreme value across agents, choices, and time periods. 

All of or only a subset of θ  can be random coefficients. We let , ,1,( ,i t i tx x′=  

,| |,, )i D tx′… . The type specific conditional choice probability is 
 

,
, | |
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g x
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  (4) 

 
where ,( , , )i tv d x θ  denotes Rust’s choice-specific value function. 

As an illustration consider a dynamic binary choice model of Rust (1987) where 
the conditional choice probability of taking an action “1” is given by 

 

1
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and ( , ; , )EV x d β α  is given by the unique solution to the Bellman equation 
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( , ; , ) log{exp{ ( ,1; , )}
y

EV x d y EV yβ α β δ β α′= +∫  

exp{ ( ,0; , )}} ( | , )EV y dy x dα δ β α π+ +   (7) 

 
with the transition density ( | , )dy x dπ . Note that although the distribution of β  
does not depend on x , the evolution of the state variable x  over time depends on 
the type specific value β . This is because individuals having the same ,i tx x= �  at 
time t  but having different β ’s will make different choices at time t  and their 
states in the following time periods will be different. However, we note that in the 
evaluation of value functions in (7), we need only the transition density of states and 
this transition density is independent of β  given D  because β  affects the 
transition of states only through the choice d. Therefore, the transition density 

( | , )dy x dπ  is not a function of β , which is typically identified in a pre-stage of 
estimation. 

In Rust (1987)’s bus engine replacement example, 0d =  denotes the 
replacement of an engine, α  denotes the scrap value, and β  is the unit 
operation cost with mileage equal to x . When the random coefficient β  is 
distributed with ( )F β , we have 

 

1(1| ) ( , , ) ( )P x g x dFβ α β= ∫  (8) 

 
where (1| )P x  is the true (population) conditional choice probability. We study 
identification of these dynamic discrete choice models with random coefficients in 
Section 5. 

 
 

III. Identification 
 
In a general framework we develop nonparametric identification of the 

distribution of random coefficients in discrete choice models. We then apply the 
results to the models of Section 2. The econometrician observes covariates or 
characteristics x and the probability of some discrete outcome indicators y, denoted 
by ( )G x . Since our leading example is discrete choice models, we interpret ( )G x  
as the conditional choice probability and let ( , )h x β  be the probability of an agent 
with the random coefficient β  taking the choice. We assume that β  and x are 
independent. 

Our goal is to identify the distribution function ( )F β  in the equation 
 

( ) ( , ) ( )G x h x dFβ β= ∫  (9) 

 



The Korean Economic Review  Volume 30, Number 2, Winter 2014 198 

where ( , )h x β  is a known function of ( , )x β . Identification means a unique 
( )F β  solves this equation for all x . Let 0( )G x  denote the true function of ( )G x  

and let 0( )F β  denote the true function of ( )F β  such that 
 

0 0( ) ( , ) ( )G x h x dFβ β= ∫ . 

 
Then the identification means for any 1 0F F≠ , we must have 1 1( , ) ( )G h x dFβ β= ∫  

0G≠ . Because 0( ) [ | ]G x E y x=  is nonparametrically identified, we focus on the 
identification of 0F  below treating 0G  is known. 

 
3.1. Notion of Identification in the Weak Topology 

 
To formalize the notion of identification we develop notation as follows. First let 

ρ  be any metric on the space of finite measures inducing the weak convergence of 
measures. For example, this includes the Lévy-Prokhorov metric for distribution 
functions. Further define 

 
2{ ( , ) : : , }K K Kh x R R xβ β= → ∈ ⊂ ∈ ⊂\ \H X B . 

 
Note that h∈H  can be read as a function of β  given x and be also a function of 
x  given β  (with possible abuse of notation). Then the identification means 

1 0F F=  in the weak topology if and only if 1 0hdF hdF∫ = ∫  for all h∈H . Let 
( )C B  be the set of continuous and bounded functions on B . We let ( )F B  be 

the set of continuous and bounded distribution functions, supported on B . We 
further let ( )G X  be the space of continuous and bounded functions on X , 
generated by the mixture in (9) and assume every ( )G∈G X  is measurable with a 
measure μ . We let ( )F B  be endowed with the metric 0 1( , )F Fρ  for 0 1,F F ∈  

( )F B  and ( )G X  be endowed with the metric 1 2( , )d G G  for 1 2, ( )G G ∈G X . We 
also assume that every h∈H  is measurable with respect to ( )F∈F B  for almost 
every x∈X . Finally let spH  denote the span of H . 

Now suppose H  satisfies that for all ( )h C∈ B , for all ( )F∈F B , and for all 
0δ > , we can find a sph′∈ H  such that 

 

h dF hdF δ⎡ ⎤′ − <⎣ ⎦∫ ∫ .  (10) 

 
Then by the definition of the span and the linearity of the integral, the condition 

(10) implies that 1 0F F=  (in the weak topology) if and only if 1 0hdF hdF∫ = ∫  for 
all h∈H . This is because the condition 1 0hdF hdF∫ = ∫  for all h∈H  becomes 
equivalent to 1 0hdF hdF∫ = ∫  for all ( )h C∈ B  under (10). This means that our 
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identification condition is equivalent to the condition that the linear span of H  is 
weakly dense in ( )C B . 

In following sections we will show that some class of functions of ( , )h x β  satisfy 
this weak denseness. We then show the type specific model choice probabilities of 
various discrete choice models - as commonly used in empirical studies - belong to 
this class. Therefore, characterizing the class of functions ( , )h x β  that satisfy the 
weak denseness condition becomes our working tool for identification of the 
distribution of random coefficients. 

Note that our identification theorems below imply 0lim ( , ) 0n nF Fρ→∞ =  if and 
only if 0lim ( , ) 0n nd G G→∞ =  for any sequence of nF  such that ( )nG ⋅ =  

( , ) nh dFβ∫ ⋅ . Note that 0lim ( , ) 0n nF Fρ→∞ =  implies 0lim ( , ) 0n nd G G→∞ =  is 
obvious when the convergence in the metric ρ  is equivalent to the weak 
convergence of measures. For example, this holds for the Lévy-Prokhorov metric if 
the metric space ( , )τB  is separable where τ  is a metric on the set B . Our 
identification results imply that the opposite is also true as long as ( ) 0μ ≠X . 
Therefore this identification result is also useful to show the consistency of a sieve 
approximation based estimator of 0F  as in Fox, Kim, and Yang (2013). 

 
3.2. Identification with Known Support of the Distribution 

 
First we consider the identification problem when the support of the distribution 

of the random coefficients B  is known. Then we relax this arguably strong 
assumption in Section 3.4. We define our notion of identification formally. 

 
Definition 1. For given ≠ 0F F , ∈Hh  distinguishes F  if ≠0( , ) 0d G G . If for 
any ≠ ∈F0( )F F  there exists a distinguishing ∈Hh , then H  is totally 
distinguishing. If for any ≠ ∈F0( )F F , all but a negligible set of ∈Hh  are 
distinguishing, then H  is generically totally distinguishing. 

 
The implication of H  being generically totally distinguishing is that then 0F  

is identified on any subset ⊂�X X  with μ ≠�X( ) 0 . This notion of identification 
is closely related to the notion of revealing and totally revealing in the consistent 
specification testing problem of Stinchcombe and White (1998) and those in works 
of Bierens (1982, 1990). We first lay out our identification theorem below (Theorem 
1) and note that its proof is closely related with Theorem 2.3 in Stinchcombe and 
White (1998) since the class of H  that is generically totally revealing in 
Stinchcombe and White (1998) is generically totally distinguishing in our problem 
of identification. 

There are, however, several important differences to be pointed out. First their 
problem is a consistent specification testing where the index set B  and draw of 
β ’s (not necessarily random) are arbitrary choices of a researcher, so the 
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distribution of β  is not of their interest but our problem is the identification of the 
distribution of β . Second we switch the role of x  and β  in the specification 
testing problems such that x ’s in X  now generate the functions in H . The last 
key difference is that for our identification result we do not need to restrict the 
function β( , )h x  to take the form of β β′= + �1( , ) ( )h x g x x  (i.e., affine in β ). 
This requires a normalization of coefficient for (e.g.) a special regressor 1x . This will 
be replaced by the requirement that X  includes at least one value ∗x  such that 

β( , )h x  does not depend on the random coefficients β  at ∗x  in our 
identification. Note that without loss of generality, following our leading example of 
the logit models, we can take ∗ = 0x  or re-center x at zero such that ⊂X{0}  for 
linear index models of the form β β′=( , ) ( )h x g x . We present our first 
identification theorem. 

 
Theorem 1. Let β β′= = ∈H X{ : ( , ) ( ), }g h h x g x x  where (i) ⊂ \X K  is a 
nonempty open set, (ii) ⊂X{0} , and (iii) g  is real analytic. Suppose B  is 
known. Then Hg  is generically totally distinguishing if and only if g  is non-
polynomial. Moreover, Hg  is also totally distinguishing. 
 
Proof. Theorem 1 is implied by Theorem 3 below and hence the proof is omitted. 
We prove Theorem 3 in Section 3.5.                                   □ 

 
In the theorem we restrict our attention to the class of models with the linear 

index inside the model choice probability of the form β′( )g x , which is general 
enough to include all static discrete choice models we consider in Section 2 and 
include a class of functions that allow for dynamic discrete choice models in Section 
5. Our results can extend to multiple linear indexes models, which may include 
discrete game models of strategic interactions. An important implication of the 
linear index is that the term inside the model choice probability is monotonic in 
each element of x that has random coefficients. This monotonicity is exploited in 
the proof of the theorem. In the theorem the conditions (i) and (ii) are typically 
assumed in the models we consider, so we need to verify only the condition of g  
being real analytic. Real analytic functions include (e.g.) polynomials, exponential 
functions, and logit-type functions. A formal definition of real analytic function is 
given as 

 
Definition 1. A function ( )g t  is real analytic at c∈ ⊆ \T  whenever it can be 
represented as a convergent power series, ∞

== ∑ −0( ) ( )d
d dg t a t c , for a domain of 

convergence around c . The function ( )g t  is real analytic on an open set 
⊆ \T  if it is real analytic at all arguments ∈Tt . 

 
Note that in Theorem 1 we do not require = \X .K  Therefore our 
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identification result is different from the identification at infinity and is also 
different from the Cramer-Wold device. 

 
3.3. Identification with Fixed Coefficients 

 
Note that when a subset (at least one) of coefficients are not random, then the 

identification of the distribution of random coefficients is also obtained because we 
can let 

 
β β β′ ′= +1 1 2 2( , ) ( )h x g x x  

 
and treat this is affine in β2  where β1  is fixed parameters and β2  is random 
coefficients. Our identification strategy for this case applies in two stages. The 
identification of homogenous coefficients is trivial when 2x  can take the value of 
zero. At =2 0x , the model becomes discrete choice models with homogeneous 
parameters only and their identification is a standard problem. To give further 
details note that in a first stage of an auxiliary argument we identify the true β 0

1  
using the relationship from (9) as 
 

0 1 1 1 2 0 2 1 1 0 2 1 1( ,0) ( ,0, , ) ( ) ( ) ( ) ( )G x h x dF g x dF g xβ β β β β β′ ′= = =∫ ∫ . 

 
Then because 0 1( ,0)G x  is known we can identify β 0

1  from the inverse function 
of the relationship above, typically using a regression. Therefore, in this case we can 
treat β 0

1  as being known and focus on the identification of β0 2( )F . Then the 
identification of β0 2( )F  follows from the corollary below: 

 
Corollary 1. Let β β β′ ′= = + ∈H X1 1 2 2 1 2{ : ( , ) ( ),( , ) }

Ag h h x g x x x x  where (i) the set 
of values of X2 2,x  is a nonempty open set, (ii) X  includes values of the form 

1{( ,0)}x , and (iii) g  is real analytic. Suppose β1  is fixed coefficients and the 
support of β B2 2( ),F  is known. Then H

Ag  is generically totally distinguishing if 
and only if g  is non-polynomial. Moreover, H

Ag  is also totally distinguishing. 
 
Proof. Corollary 1 is a direct application of Theorem 1 or Lemma 3.7 in 
Stinchcombe and White (1998) because β β′ ′+1 1 2 2( )g x x  is affine in β2  given β1 . 

□ 
 
Below we focus on the models with random coefficients only because all 

theorems we develop will apply to the models with a subset of fixed parameters after 
a first stage of identifying the fixed parameters is applied. 
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3.4. Identification with Unknown Support of the Distribution 
 
Often we do not know the support of B,F . For this reason, it will be useful to 

strengthen the identification result when the mixture in (9) is generated by any 
compact subset B  as in Fox, Kim, Ryan, and Bajari (2012). We define this 
stronger notion of identification as 

 
Definition 2. H  is completely distinguishing if it is totally distinguishing for any 
distribution ≠ ∈F0( )F F  supported on any compact B . 
 

The implication of H  being completely distinguishing is that 0F  is identified 
on any compact support B  while the support of ,x X  is particularly given. We 
apply this notion of identification to the class of functions β= =H { : ( , )g h h x  

β′ ∈X( ), }g x x . 
As discussed in Stinchcombe and White (1998) whether Hg  is totally 

distinguishing is equivalent to whether the linear span of Hg  defined below is 
weakly dense in B( )C . We define the linear spaces of functions, spanned by Hg  
as 

 
( )

0 1 0
( )

: | ( ) ( ), , ,( , , )
, 1, , .

L l
l l l

g l K

h h g x

x l L

β γ γ β γ γ=
⎧ ⎫′⎪ ⎪→ = +∑ ∈∑ = ⎨ ⎬

∈ ⊂ =⎪ ⎪⎩ ⎭

\ \
\ …

BH X B
X

. 

 
When = \X K , the totally distinguishing property is not surprising. More 
interesting result is obtained when X  is a subset of \K . In the proof of Theorem 
3 below, we show that ∑ H X B( , , )g  is weakly dense in B( )C  and so the 
identification result follows also with any nonempty open subset X  of \K . 

The difference between H Xsp ( )g  and ∑ H X B( , , )g  is that H Xsp ( )g  does 
not include the constant functions while ∑ H X B( , , )g  does. But the difference 
disappears when X  includes {0} or an ∗x  such that β∗′( )g x  does not depend 
on β  and β∗′ ≠( ) 0g x . Therefore, in this case H Xsp ( )g  becomes dense in 
B( )C , which is our key argument for identification. 
For Hg , it then becomes completely distinguishing when ∑ \H B( , , )K

g  (so 
= \X K ) is uniformly dense in B( )C  for any compact B . This uniform 

denseness is satisfied as long as for the non-polynomial function ( )g t , there exists 
an interval ∈[ , ]t a b  such that g  is Riemann integrable in [ , ]a b  and is 
continuous on [ , ]a b  due to Hornik (1991). Also see Lemma 3.5 in Stinchcombe 
and White (1998). 

 
Theorem 2. Let = \X K  and β β′= = ∈H X{ : ( , ) ( ), }g h h x g x x  where g  is 
Riemann integrable and continuous on ∃[ , ]a b  and non-polynomial. Then Hg  is 
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completely distinguishing. 
Proof. The theorem follows from = ∑ \H H Bsp ( , , )K

g g  and by Lemma 3.5 in 
Stinchcombe and White (1998).                                      □ 

 
Theorem 2 show that a wide class of functions g  - that include all of the 

discrete choice models we consider in Section 2 - can identify the distribution of 
random coefficients as long as we have the full support condition, = \X K  but 
this full support condition is very strong requirement. Also note that we have not yet 
seen any role of analytic function in the identification because any non-polynomial 
real analytic function satisfies the requirement on g  in Theorem 2. Theorem 3 
below shows that we can relax the full support condition for the identification when 
g  is real analytic. This includes exponential functions and more importantly logit 

functions (See e.g. Fox, Kim, Ryan, and Bajari, 2012). 
This also reveals the role of analytic function in the identification. It effectively 

removes the full support requirement, which is very important for discrete choice 
models where the values of covariates are bounded below and above. 

Now we show the above completeness result is generically true for any nonempty 
open subset ⊂ \X K  when the function g  is analytic. We further define 

 
Definition 3. H  is generically completely distinguishing if and only if it is totally 
distinguishing for any open set X  with nonempty interior and for any distribution 

≠ ∈F0( )F F  supported on any compact B . 
 
Theorem 3. Hg  is generically completely distinguishing when ⊂X{0}  if and 
only if g is real analytic and is not a polynomial. 
 
Proof. See Section 3.5 for the proof.                                    □ 
 
Theorem 3 is our most general result and is the main theorem. Note that this 
identification result also holds for models with a subset of coefficients (at least one) 
being not random because all theorems we develop apply to the models with a 
subset of fixed parameters after a first stage of identifying the fixed parameters is 
applied. 
 
Corollary 2. Let β β β′ ′= = + ∈H X1 1 2 2{ : ( , ) ( ), }

Ag h h x g x x x  where g  is a real 
analytic non-polynomial function, X  includes values of the form 1{( ,0)}x , and 
β1  is fixed coefficients. Then H

Ag  is generically completely distinguishing. 
 

Proof. See Appendix B for the proof.                                 □ 
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3.5. Proof of Theorem 3 
 
Because Theorem 3 implies Theorem 1 with the known support B , we only 

prove Theorem 3. Theorem 3 is implied by the following two lemmas. First, we 
show that for Hg , the generic completeness is equivalent to the condition that for 
every X  with nonempty interior, ∑ H X B( , , )g  is uniformly dense in B( )C  for 
any compact B . 

 
Lemma 1. The class Hg  is generically completely distinguishing if and only if for 
every open set X  with nonempty interior, ∑ H X B( , , )g  is uniformly dense in 
B( )C  for any compact B . 
 
In the proof we use the fact that β′x  is monotonic in each element of x . By 

construction of the linear index, this monotonicity is trivially satisfied for the static 
discrete choice models. For the dynamic discrete choices, to apply the theorem, we 
need to verify the choice specific continuation payoffs function β α( , ; , )EV x d  
(defined in Section 2.5) is monotonic in each element of x  and we verify this in 
Section 5. 

We note also that 
 

Lemma 2. (Theorem 3.8. of Stinchcombe and White, 1998) Hg  is generically 
completely distinguishing if and only if it is completely distinguishing when g  is 
real analytic. 

 
The most important implication of Lemma 2 is that we have only to show the 

identification at a particular choice of X . Then, according to Lemma 2, the 
identification must also hold for any X  with nonempty interior. This result 
facilitates applications of the identification argument substantially because one can 
take the full support = \X K  under which the identification is often easier to 
show (see e.g. Fox, Kim, Ryan, and Bajari, 2012). Note that verifying identification 
with = \X K  does not mean we indeed require the true data should have the full 
support. It only means that if one shows identification as if = \X K , then 
identification must also hold for any X  with nonempty interior, which includes 
the real data situation. 

Combining Lemma 1 and 2 we conclude that Theorem 3 holds because Hg  is 
completely distinguishing as long as g is real analytic by Theorem 2. In the 
appendix we prove Lemma 1 and provide the proof of Lemma 2 for completeness. 

 
3.6. Identification with Non-analytic Functions 

 
We find that the class of functions that is generically completely distinguishing is 
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not limited to analytic functions. Other class of functions that satisfy the following 
condition is also generically completely distinguishing. This includes the normal 
cumulative distribution function. Therefore the distribution of random coefficients 
in the probit model is also nonparametrically identified. 

 
Theorem 4. Suppose that ≤ < ∞ ∈Tsp{ ( ),0 | }pd g t P t  is dense in \( )C  for any 
nonempty open subset ⊂ \T  containing {0} with ⋅( )g  infinitely differentiable. 
Then for any open set ⊂ \X K  with nonempty interior, the span ∑ H X B( , , )g  is 
uniformly dense in B( )C  for any compact B , so Hg is generically completely 
distinguishing. 
 
Proof. Theorem 4 trivially follows from Theorem 3.10 in Stinchcombe and White 
(1998).                                                         □ 

 
 

IV. Identification of Static Discrete Choice Models 
 
We verify identification conditions for the examples of static discrete choice 

models. Because other conditions for identification are either trivially satisfied or 
can be directly assumed, we focus on showing the type specific model choice 
probability function is either being real analytic - as the key condition in Theorem 3 
- or belongs to other class of generically completely distinguishing functions as in 
Theorem 4. 

 
4.1. Logit Model with Individual Choices (Fox, Kim, Ryan, and Bajari, 

2012) 
 
For the multinomial logit model (2) our identification argument on β( )F  

proceeds after we recover the constant term α  from a first stage using an auxiliary 
argument that does not depend on β . The same strategy was used in Fox, Kim, 
Ryan, and Bajari (2012) to identify homogenous parameters in a first stage. The 
typical strategy is using the observed choice probability at = 0ix  where we have 

α
α+= = = exp( )

, 1 exp( )( 1| 0) .i j i JP y x  Because = =,( 1| 0)i j iP y x  is nonparametrically 
identified from the data, α  is also identified from the inverse function. Below we 
focus on the identification of β( )F  assuming α  is known. With abuse of 
notation we write β β α= 0( , ) ( , , )j i j ig x g x  where α 0  denotes the true value of 
α . 

In Section 3 we have shown that the key identification condition of β( )F  is that 
(i) β( , )j ig x  is real analytic, (ii) the support of distribution X,ix  has nonempty 
interior, and (iii) X  includes at least one value of = �x x  such that β ≠�( , ) 0jg x  
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does not depend on β . We assume the condition (ii). To satisfy the condition (iii) 
simply we can take =� 0x  in static discrete choice models where the covariates are 
re-centered at zero. For a binary logit model, it is obvious that β( , )j ig x  is real 
analytic, so the condition (i) is also satisfied. For the multinomial logit case too we 
can show that β( , )jg x  is real analytic. Pick a particular j  and let ′ = 0jx  for 
all ′ ≠j j . Then we have ,

0
,

exp( )

exp( ) 1 exp( )
( , ) i j

i j

x

j i J x
g x

β

α β
β ′

′− + − +
= , which has the form 

η η+≡ exp( )
exp( )( ) t

tG t  for some η  and hence β( , )j ig x  is real analytic because the 
exponential function is real analytic and the function β( , )j ig x  is formed by the 
addition and division of never zero real analytic functions (Krantz and Parks, 2002). 

 
4.2. Nested Logit Model with Individual Choices 

 
First we show ρ j  - that reflects the correlation between goods for each group - 

is identified from an auxiliary step. Note that where = 0iz  and = 0ix , we have 
 

ρ
γ β ρ

ρ′ ′ ′=

≡ = = = = =
∑

0
, , , ,

0

exp( log( )) 1
( 1| 0, 0) (0,0, , , )

exp( log( ))
j j

j l i j l i i j l J
j j j j

L
P P y z x g

L L
. 

 
It follows that 

ρ

ρ ′ ′′=∑
⋅ =

0

exp( log( ))0
, exp( log( ))

j j

J
j jj

L

j j l L
L P  and therefore ⋅ − ⋅ =0 0

, 0 0,log( ) log( )j j l lL P L P  
ρ log( )j jL , from which we identify ρ j  for = …1, ,j J  as 
 

0 0
, 0 0,{log( ) log( )} / log( )j j j l l jL P L P Lρ = ⋅ − ⋅  

 
because 0

,j lP  and jL  are directly observable from data for all ,j l . Below we treat 
ρ j ’s as known. 

In the nested logit model of (3) we focus on showing γ β ρ, ( , , , , )j l i ig z x  is a real 
analytic function. Other conditions for identification in Section 3 are trivially 
satisfied or directly assumed as in the multinomial logit case. 

Now pick a particular j  and let ′ = 0jz  for all ′ ≠ ∈ …{0,1, , }j j J  and let 
=, 0j lx  for all j  and l . Then we have 

 
γ β ρ, ( , , , , )j l i ig z x  

γ ρ
ρ γ ρ′ ′ ′≠

′ +
=

′∑ + +
,

,

exp( log( )) 1
exp( log( )) exp( log( ))

i j j j

j j j j i j j j j

z L

L z L L
 

γ
ρ ρ γ′ ′ ′≠

′
=

′∑ − +
,

,

exp( ) 1
exp( log( ) log( )) exp( )

i j

j j j j j j i j j

z

L L z L

γ
η γ

′
=

′+
,

,

exp( ) 1
exp( )

i j

i j j

z

z L
 

 
where we let η ρ ρ′ ′ ′≠= ∑ −exp( log( ) log( ))j j j j j jL L . 
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Therefore γ β ρ, ( , , , , )j l i ig z x  has the form as η η+= exp( )1 1
exp( )( )

j j

t
L t LG t , so is an 

analytic function as in the multinomial logit case (Krantz and Parks, 2002). 
Therefore the distribution of the random coefficients γ  is identified when jz  
also includes {0}. Now we turn to the identification of the distribution of β j . Let 

= 0jz  for all j  and let ′ ′ =, 0j lx  for all ′ ≠j j  and ′ ≠l l . Then we have 
 

γ β ρ, ( , , , , )j l i ig z x  

ρ β ρ
ρ ρ β ρ′ ′ ′≠

′− +
=

′∑ + − +
, ,

, ,

exp( log( 1 exp( / )))

exp( log( )) exp( log( 1 exp( / )))
j j i j l j j

j j j j j j i j l j j

L x

L L x
 

β ρ
β ρ

′
×

′− +
, ,

, ,

exp( / )

1 exp( / )
i j l j j

j i j l j j

x

L x
 

ρ

ρ

β ρ

ρ β ρ′ ′ ′≠

′− +
=

′∑ + − +
, ,

, ,

( 1 exp( / ))

exp( log( )) ( 1 exp( / ))

j

j

j i j l j j

j j j j j i j l j j

L x

L L x

β ρ
β ρ

′

′− +
, ,

, ,

exp( / )

1 exp( / )
i j l j j

j i j l j j

x

L x
. 

 
Because the product of analytic functions is also analytic, we have only to show the 
function 

 
ρ

η ρ

ρ

η ρ

− +
=

+ − +
�
�

�
( 1 exp( / ))

( )
( 1 exp( / ))

j

j

j j

j j

L t
G t

L t
 

 
(where we write η ρ′ ′ ′≠= ∑� exp( log( ))j j j jL ) is analytic because 

β ρ
β ρ

′

′− +
, ,

, ,

exp( / )

1 exp( / )
i j l j j

j i j l j j

x

L x  is 
analytic (it can be written as η+

exp( )
exp( )

t
t  for some η ). η�

� ( )G t  is also analytic as long 
as ρρ− +( 1 exp( / )) j

j jL t  is analytic because the reciprocal of an analytic function 
that does not take the value of zero at its support is also analytic. Now note that 

ρρ− +( 1 exp( / )) j

j jL t  is analytic because compositions of analytic functions are 
analytic and 1 exp( / )j jL t ρ− +  is strictly positive. Therefore we conclude the 
distribution of random coefficients of β j  is identified. Similarly we can show that 
all the distributions of β = …, 1, ,j j J  are identified. 
 
4.3. Probit Model with Binary Choice 

 
We assume the support of distribution of ,1ix  includes {0} (or re-centered at 

zero). In a first stage we identify α 0  from α= = = Φ 0
,1 ,1( 1| 0) ( )i iP y x . Also Φ ⋅( )  

does not depend on β  at =,1 0ix  and αΦ ≠0( ) 0 . Finally although the normal 
CDF Φ ⋅( )  is not analytic, it is infinitely differentiable and satisfies conditions in 
Theorem 4. Therefore the distribution β( )F  is identified in this case too. 
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4.4. Logit Model with Aggregate Data 
 
As the logit model with individual choices, by the similar argument, the 

distribution of random coefficients for this case is also identified. The only 
difference is that in the individual choices we identify =,( 1| )i j iP y x  from the data 
in an auxiliary step while in the aggregate data case, the conditional share js  is the 
data. 

 
 

V. Identification of Dynamic Programming  
Discrete Choices 

 
We have shown that the distribution of random coefficients is identified for static 

discrete choice models. However, the theorems in Section 3 cannot be directly 
applied to the dynamic programming discrete choice problems because the type 
specific model choice probabilities in these models contain the choice specific 
continuation payoffs functions. In this section first we show that the choice specific 
continuation payoffs function and so the choice specific value function is monotonic 
in each element of covariates vector that have random coefficients. Then we show 
that Theorem 3 can extend to the dynamic programming discrete choice problems 
based on this monotonicity result.2 

Following Rust (1994), let β α( , , , )u x d  denote the per period utility of taking 
an action d  in the set of choices ( )D x  where x  denotes the covariates or states 
variables with random coefficients, β  denotes random coefficients, and α  
denotes homogeneous coefficients. Let β α( , ; , )EV x d  denote the choice specific 
continuation payoffs function or the choice specific expected value function. Then 
for the logit model the type specific choice probability of taking the action d  
becomes 

 
β α δ β αβ α

β α δ β α′∈

+
=

′ ′∑ +( )

exp{ ( , , , ) ( , ; , )}
( , , )

exp{ ( , , , ) ( , ; , )}d
d D x

u x d EV x d
g x

u x d EV x d
 

 
where the expected value function β α( , ; , )EV x d  of the logit model is given by the 
unique fixed point that solves 

 

β α β α δ β α π
′∈

⎧ ⎫⎪ ⎪′ ′= +⎨ ⎬
⎪ ⎪⎩ ⎭
∑∫

( )

( , ; , ) log exp{ ( , , , ) ( , ; , )} ( | , )
y

d D y

EV x d u y d EV y d dy x d  

 
____________________ 

2 Theorem 1 also extends to the dynamic discrete choices because Theorem 3 implies Theorem 1. 
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where π( | , )dy x d  denotes the transition density depending on d . We note that 
 

Lemma 3. Suppose the per period utility satisfies the linear index restriction, i.e., 
β α( , , , )u x d  depends on β′dx  but does not depend on dx  or β , separately. 

Finally assume ( | , )dy x dπ  is known and does not depend on β  given d . Then 
the choice specific continuation payoffs function β α( , ; , )EV x d  is monotonic in 
each element of x . 
 
Proof. See Appendix C for the proof. Note that the result and its proof are not 
specific to the logit model.                                          □ 

 
Based on this monotonicity, next we obtain the identification of the distribution 

of random coefficients for dynamic discrete choice models. 
 

Theorem 5. Let β α( , , )dg x  be the type specific choice probability of a dynamic 
discrete choice problem. Then β α= = ∈H X{ : ( , , ), }D

g dh h g x x  is generically 
completely distinguishing when ⊂X{0}  if and only if (i) dg  is real analytic and 
is not a polynomial and (ii) the conditions in Lemma 3 hold. 
 
Proof. See Appendix D for the proof.                                  □ 

 
In the example of the dynamic binary choice model of (5)-(6), HD

g  becomes 
 

{ β α= =H 1: ( , , )D
g h h g x  

β δ β α
α δ β α β δ β α

′ ⎫+
= ∈ ⎬′+ + + ⎭

X
exp{ ( ,1; , )}

,
exp{ ( ,0; , )} exp{ ( ,1; , )}

x EV x
x

EV x x EV x
 

 
and we prove the identification theorem for the binary case in the appendix without 
loss of generality because (e.g.) for the multinomial choices, we can let = 0dx  for 
≠ 1d . In the proof we assume the discount factor δ , the scrap value α , and the 

transition density π( | , )dy x d  are known resorting to the following remark: 
 
Remark 1. Rust (1987, 1994) and Magnac and Thesmar (2002) argue that it is 
difficult to identify the discount factor δ , so we assume it is known. For the binary 
logit case the homogeneous parameter, scrap value α  is identified at = 0x  from 
the observation that α αβ α β β+ += = ∫ = ∫ =1 1

1 exp{ } 1 exp{ } 1(1| 0) (0, , ) ( ) ( )P x g dF dF  
because from (7) we find β α β α=(0,1; , ) (0,0; , )EV EV  (see also Rust, 1987). The 
transition density π( | , )dy x d  is also nonparametrically identified from the data. 
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VI. Conclusion 
 
We show that the distributions of random coefficients in various discrete choice 

models are nonparametrically identified. Our identification results apply to both 
binary and multinomial logit, nested logit, and probit models as well as dynamic 
programming discrete choices. We find that the distribution of random coefficients 
is identified if (i) the type specific model choice probability belongs to a class of 
functions that include real analytic functions and the support of the distribution of 
covariates is a nonempty open set, (ii) the term inside the type specific choice 
probability is monotonic in each element of the covariates vector that has random 
coefficients, and (iii) the type specific choice probability does not depend on random 
coefficients at a particular value of covariates. We show that these conditions are 
satisfied for various discrete choice models that are commonly used in the empirical 
studies. In our identification results we stress the role of analytic function that 
effectively removes the full support requirement often exploited in other 
identification approaches. Therefore our results are important for discrete choice 
models where the values of covariates are often bounded below and above. 

Lastly, as a referee points out, our identification results can be used as basis for 
specification testing. First note that our identification allows for the case of 
degenerated distribution (i.e., coefficients are fixed parameters, not random) and 
hence can serve as a specification test for a random coefficient model. Moreover, our 
results can be used as a specification test for the specific choice model. Suppose a 
known ψ β( , )x , with appropriate normalization, is incorrectly used instead of the 
true β( , )h x  in (9). Then since 

 
ββ β ψ β β

ψ β
= =∫ ∫0 0 0

( , )
( ) ( , ) ( ) ( , ) ( )

( , )
h x

G x h x dF x dF
x

 

( , ) ( , )x dH xψ β β= ∫  

 
for an H  such that β

ψ ββ β= ( , )
0( , )( , ) ( ),h x

xdH x dF  if ψ β( , )x  satisfies the 
identification conditions, then any distribution function of β  only - which is not a 
function of x  - will be rejected from our identification exercise. Therefore one can 
conclude ψ β( , )x  is incorrectly specified when it is used for the choice model. 
Some forms of these specification tests can be addressed with further research based 
on our identification results. 
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Appendix 
 

A  Proof of Lemma’s for Theorem 3 
 
A.1  Proof of Lemma 1 
We prove Lemma 1 for dynamic discrete choice models in Section D. Lemma 1 

for the static discrete choice models with Hg  can be proved by the essentially same 
arguments by taking the discount factor δ = 0  i.e., we drop the continuation 
payoffs function β α( , ; , )EV x d  in the type specific model choice probability. 

 
A.2 Proof of Lemma 2 (Theorem 3.8. of Stinchcombe and White, 1998) 
See the proof of Theorem 3.8. of Stinchcombe and White (1998) or the proof of 

Lemma 5 of Fox, Kim, Ryan, and Bajari (2012). We provide the proof for 
completeness. 

If Hg  is generically completely distinguishing, it is also completely 
distinguishing by definitions. Next we show the opposite is also true. If Hg  is not 
generically completely distinguishing, we can find a compact set �B  and a 
nonempty open set �X  such that ∑ � �H X B( , , )g  is not uniformly dense in �B( )C . 
Then there exists a distribution ≠� 0F F  supported on �B  such that for all ∈ �Xx , 

0( ) ( ) ( ( ) ( )) 0G x g x d F Fβ β β′= ∫ − =� �  by the Hahn-Banach theorem. We, however, 
note that �( )G x  is real analytic because ⋅( )g  is and �B  is compact. We further 
note that a real analytic function is equal to zero on the open set �X  if and only if 
it is equal to zero everywhere. This implies that Hg  is not completely 
distinguishing. Therefore if Hg  is completely distinguishing, it must be also 
generically completely distinguishing. This completes the proof. 

In the proof �( )G x  is a multivariate function. According to Definition 2.2.1 in 
Krantz and Parks (2002) a function Δ( )x , with domain an open subset ⊆ \T K  
and range \ , is called (multivariate) real analytic on T  if for each ∈Tx  the 
function Δ ⋅( )  may be represented by a convergent power series in some 
neighborhood of x. 

 
B  Proof of Corollary 2 

 
This can be proved similarly to the proof of Theorem 3 or the proof of Lemma 

3.7 in Stinchcombe and White (1998). 
 

C  Proof of Lemma 3 
 

Proof. We prove the lemma for the dynamic binary choice without loss of generality. 
Let �( )kx  be a vector of states that is equal to x  except the k -th element. Let 
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( )( , ; , )kEV x d β α��  denote the value function when an agent having the covariates or 
states equal to �( )kx  takes a sequence of choices that are optimal under the current 
state x . Without loss of generality we consider the case that βk , the k -th 
element in β  is positive and ≥�( )kx x . Then we have 
 

β α β α≤� �� ( ) ( )( , ; , ) ( , ; , )k kEV x d EV x d  

 
because β α�( )( , ; , )kEV x d  is the value of the expected value function when an 
agent with the states equal to �( )kx  takes a sequence of optimal choices by the 
definition of the value function and β α�� ( )( , ; , )kEV x d  is from a non-optimal 
choices of actions. Next we note that 

 
( )( , ; , ) ( , ; , )kEV x d EV x dβ α β α≤ ��  

 
because (i) for any time period the per period utility under �( )kx  is greater than or 
equal to the per period utility under x  and (ii) the agent takes the same sequence 
of choices under x  and �( )kx  in our definition of β α�� ( )( , ; , )kEV x d . Combining 
these two results, we conclude the monotonicity because 

 
β α β α≤ �( )( , ; , ) ( , ; , )kEV x d EV x d  whenever ≥�( )k

k kx x . 

 
Our choice of the k -th element is arbitrary and so this monotonicity result holds 
for any element in x .                                             □ 

 
D  Proof of Theorem 5 

 
We prove this theorem by showing corresponding results to Lemma 1 and 

Lemma 2 hold for HD
g . Lemma 2 holds trivially since the function g  in HD

g  is 
analytic. We focus on Lemma 1. We prove this for the dynamic programming 
binary choice model of (5)-(6) without loss of generality. We assume the discount 
factor δ  is known. We also assume α  is known since it can be identified from 
an auxiliary step as discussed in Remark 1. 

Define the linear spaces of functions, spanned by HD
g  as 

 

β γ γ β α γ γ=⎧ ⎫→ = +∑ ∈
∑ = ⎨ ⎬

∈ ⊂ =⎩ ⎭

\ \
\ …

B
H X B

X

( )
0 1 1 0

( )

: | ( ) ( , , ), , ,
( , , )

, 1, , .

L l
D l l l
g l K

h h g x

x l L
. 

 
If the uniform closure of H Xsp ( )D

g  contains B( )C , then that of ∑ H X B( , , )D
g  

also must contain B( )C  since ⊂ ∑H X H X Bsp ( ) ( , , )D D
g g  by construction. Now 
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suppose the uniform closure of ∑ H X B( , , )D
g  contains B( )C  for every compact 

⊂ \B K  and suppose that ⊂ \X K  has nonempty interior containing {0}. We 
will prove Theorem 5 by contradiction. We prove this for the dynamic 
programming binary choice problem (say = {0,1}D ) without loss of generality 
because for the multinomial choices, we can let = 0dx  for ≠ 1d . We take = 1g g  
and let = 1x x  below. 

Now suppose that H Xsp ( )D
g  is not dense in B( )C  for some X  and B . 

This happens if and only if there exists a distribution function ≠ 0F F  (in the sense 
that ρ ≠0( , ) 0F F ) supported on B  such that for all ∈Xx , β α β∫ 1( , , ) ( ( )g x d F  

β− =0( )) 0F .  
Let A  be a compact subset of \K  containing an ε -neighborhood of B  (in 

terms of the Hausdorff metric) for some ε > 0 . Pick δ > 0  and ∈� Xx  such that 
δ�( ,2 )S x , the ball of radius δ2  around �x , is contained in X . By assumption, 

δ∑ �H( , ( ,2 ), )D
g S x A  is uniformly dense in ( )C A . It follows that for every ∈`n  

and for every strict subset ⊂�A A , some element of δ∑ �H( , ( , ), )D
g S x A  is 

uniformly within 1n−  of the continuous function 
 

β = −( ) : max{1nf n β �( , ),0}A  

 
where ( β �, A ) is the Hausdorff distance from β  to the set �A . By construction 
the sequence β( )nf  is uniformly bounded between zero and one and converges 
pointwise to the indicator function β ∈ �1{ }A . Therefore, as n  goes to infinity, 

β β β∫ − 0( ) ( ( ) ( ))n
A f d F F  goes to β β∫ −� 01 ( ( ) ( ))A d F F . Because each nf  is in the 

span of δ�H ( ( , ))D
g S x  and 1, we can write 

 

β γ γ β α
=

= + ∑
,

( , )
0, , 1

, 1

( ) ( , , )
L n

n l n
n l n

l n

f g x  (11) 

β δ β α β αγ γ
α β δ β α β α=

′ + −
= +

′+ + −
∑

( , ) ( , ) ( , ),

0, , ( , ) ( , ) ( , )
, 1

exp{ [ ( ,1; , ) ( ,0; , )]}

exp{ } exp{ [ ( ,1; , ) ( ,0; , )]}

l n l n l nL n

n l n l n l n l n
l n

x EV x EV x

x EV x EV x

 
where each δ∈ �( , ) ( , )l nx S x . The key idea underlying this proof strategy is that we 
can stretch out the functions nf  without changing their integral against β −( )F  

β0( )F , and then we show this cannot happen unless β β= 0( ) ( )F F  for almost all 
β ∈B . 

Now we formalize the idea. Because β α β β∫ −1 0( , , ) ( ( ) ( ))g x d F F  equal to zero 
for any element ∈H X1 ( )D

gg , we can let any �( , )l nx  substitute each ( , )l nx  in (11) 
without changing the integral of β( )nf  against 0( ) ( )F Fβ β− . Without loss of 
generality we can take �A  as a Cartesian product of intervals β β=Π 1[ , ]K

k k k . Then, 
for each of K  elements we can find a sequence of ,l n

kb  and ,l n
kc , = …1, ,k K , in 
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\K  such that 
 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )[ ( ,1; , ) ( ,0; , )]l n l n l n l n l n l n
k k k kx b EV x b EV x bδ α α β′ + − =  

and 
( , ) ( , ) ( , ) ( , ) ( , ) ( , )[ ( ,1; , ) ( ,0; , )]l n l n l n l n l n l n

k k k kx c EV x c EV x cδ α α β′ + − = . 

 
Because (i) δ δ⊂ ⊂� � X( , ) ( ,2 )S x S x  and (ii) the function β δ β α′ + −[ ( ,1; , )x EV x  

β α( ,0; , )]EV x  is monotonic in each element of x ,3 now we can find some 
η ε∈(0, )k , = …1, ,k K  such that for all ( , )l n -pairs there exists ∈� X( , )l nx  such 
that 
 

δ α α β η′ + − = −� � �( , ) ( , ) ( , ) ( , ) ( , ) ( , )[ ( ,1; , ) ( ,0; , )]l n l n l n l n l n l n
k k k k kx b EV x b EV x b  

and 

δ α α β η′ + − = +� � �( , ) ( , ) ( , ) ( , ) ( , ) ( , )[ ( ,1; , ) ( ,0; , )]l n l n l n l n l n l n
k k k k kx c EV x c EV x c . 

 
In the sequence of functions { }nf  defined in (11), replace each ( , )l nx  by the 

corresponding �( , )l nx  and obtain a sequence of functions in ∑ H X B( , , )D
g , say 

{ }nh . Then the sequence { }nh  converges pointwise to the indicator function 

ηβ ∈ �1{ }A  where η β η β η== Π − +�
1[ , ]K

k k k k kA . Therefore, we find 
 

η

β β β β− = −∫ ∫� �0 01 ( ( ) ( )) 1 ( ( ) ( ))
A A

d F F d F F  

 
and this cannot be true unless β β= 0( ) ( )F F  for almost all β ∈B  because A  
contains an ε -neighborhood of B . Based on this contradiction, we complete the 
proof. 

 
 

____________________ 
3 Lemma 3 implies that the difference of the expected value functions, β α −( ,1; , ) ( ,0;EV x EV x  

β α, )  in (6) is monotonic in each element of x  because β α( ,0; , )EV x  does not depend on x  
(Recall that “ = 0d ” denotes the replacement of a bus engine). It also follows that the function 
β δ β α β α′ + −[ ( ,1; , ) ( ,0; , )]x EV x EV x  in (6) is monotonic in each element of x . 
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