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We study the co-evolution of social preferences and bounded rationality. In particular, we 
show that when agents are boundedly rational, altruistic preferences are evolutionarily 
stable, even in environments that are deemed unfavorable for altruism in the literature. The 
existing standard result is that when interactions are strategic substitutes and exhibit negative 
externality, only selfish preferences are evolutionary stable. The key assumption underlying 
this result is that agents are perfectly rational. Selfish agents are thus able to play the Nash 
equilibrium, gaining evolutionary advantages over altruists. By relaxing this assumption, we 
show that altruist preferences can survive among bounded rational agents. The simple 
intuition is that selfish agents, now with bounded rationality, choose excessive action, which 
in turn induces altruists to choose an action level closer to the Nash equilibrium–an action 
level evolutionarily stable in the long run. We combine the level-k model of bounded 
rationality and the standard evolutionary model of altruistic preferences and characterize for 
the conditions under which altruism can proliferate in the long run. 
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8 
I. Introduction 

 
Social preferences such as altruism and reciprocity help us explain why people 

often cooperate in social dilemmas–situations in which unilateral defection gives 
higher material payoffs (Fehr and Gaechter, 2000; Bowles, 2004). Many researchers 
have examined whether such social preferences exist and, if so, whether they are 
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stable in the long run when preferences evolve over time (Bester and Guth, 1998; 
Sethi, 2001; Alger and Weibull, 2013). Further, a substantial amount of behavioral 
and experimental literature reports that agents typically have limited and bounded 
rationality, following Herbert Simon who proposed bounded rationality as an 
alternative basis for economic decision making (Simon, 1975; Kahneman, 2003). A 
natural question then is how do social preferences evolve among agents with limited 
and bounded rationality? Few studies have addressed this question and hence the 
relationship between the two traits is poorly understood. In this study, we examine 
the evolution of altruistic preferences among agents with bounded rationality. 

Our study is motivated by various recent empirical and experimental findings of 
interdependence between preferences and rationality (Brandstater and Guth, 2002; 
Ben-Ner et al., 2004; Millet and Dewitte, 2007; Oechssler et al., 2009; Liberali et al., 
2012; Benjamin et al., 2013; Dittrich and Leipold, 2014). For example, in a 
laboratory study of Chilean high school students, Benjamin et al. (2013) find 
elementary school grade point averages predictive of preferences measured at the 
end of high school. Similarly, some experiments report that cognitive abilities play a 
prominent role in behavioral bias (see, e.g., Oechssler et al. (2009)). A more direct 
relation between reasoning and social preferences is found in Dittrich and Leipold 
(2014), who show through experiments that “subjects who use most steps of 
reasoning are more selfish, trust less and are less reciprocal than subjects who 
perform no steps of reasoning.” 

In this study, we examine the evolution of altruistic preferences among bounded 
rational agents in environments where interactions are strategic substitutes and 
exhibit negative externality. These environments are typically considered 
unfavorable for the evolution of altruistic preferences. For example, Bester and 
Guth (1998) show that under these environments, altruistic preferences are not 
evolutionarily stable and only selfish preferences are stable. In the presence of 
negative externality and strategic substitutability, the trait adopting the action level 
of the Nash equilibrium is evolutionarily stable, whereas the trait adopting other 
action is not. Since selfish agents adopt the Nash equilibrium action, the selfish trait 
is evolutionarily stable. By contrast, altruistic agents internalizing negative 
externality choose actions different from the Nash equilibrium action, creating 
unfavorable evolutionary forces against the selection of altruistic traits. However, 
the key assumption underlying this argument is that selfish agents know how to 
play the Nash equilibrium–the assumption of perfect rationality. We show, perhaps 
surprisingly, that the effect of bounded rationality, by ameliorating the negative 
effect of unfavorable environments, allows altruism to proliferate and hence 
altruism and bounded rationality may co-evolve. The simple intuition is that selfish 
agents, now with bounded rationality, choose excessive action, which in turn 
induces altruists to choose an action level closer to the Nash equilibrium–an action 
level evolutionarily stable in the long run. 
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Specifically, we study a population of agents randomly matched to play a game in 
which interactions are strategical substitutes and exhibit negative externality–a 
game commonly used to describe the tragedy of the commons. We then combine 
the standard evolutionary model of social preferences and the bounded rationality 
model, namely, the level- k  model (see, e.g., Hwang and Bowles (2012) for the 
model of social preferences and see Stahl and Wilson (1994), Stahl and Wilson 
(1995), and Nagel (1995) for the level- k  model). In particular, we use the so-called 
indirect evolutionary approach. According to this approach, individual behaviors are 
based on subjective utility derived from social preferences as well as material payoffs, 
while the long run success of such behaviors is based only on material payoffs (Guth 
and Yaari, 1992). Thus, evolutionary success depends only on the material payoffs 
of agents adopting a certain preference and hence provides a strong case for the 
evolution of that preference, when it turns out to be evolutionarily successful. The 
level- k  model, introduced by Stahl and Wilson (1994) and Nagel (1995), is also 
one of the popular bounded rationality models frequently applied in the literature 
(see Crawford (2013)). 

By combining these two elements in our model, we find various conditions for 
the action levels of altruist and selfish agents as well as the degrees of altruism 
(Propositions 2, 3) under which altruistic preferences are evolutionarily stable and 
selfish preferences are not evolutionarily stable. The paper is organized as follows. 
Section 2 presents the main model, Section 3 provides the main analysis, Section 4 
explores some extensions of the main model, and Section 5 concludes the paper. 

 
 

II. Altruism and Bounded Rationality 
 
Consider a community of a large number of members randomly paired to play a 

symmetric game whose payoff functions are given by 
 

1 2( , ) : ( ) ( ), ( , ) : ( ) ( ),x y xf x y g x x y yf x y g yp p= + - = + -  
 

where , 0x y ³ . Here, ( )f x y+  specifies the marginal benefit of varying action x , 
which in turn depends on the joint action of x  and y , and function ( )g x  is the 
cost of such action. We assume that 0, 0f g³ ³ , and 0g¢ > . Since this is a 
symmetric game, we write 1( , ) ( , ).x y x yp p=  Then 2p  is given by 2( , )x yp =

( , )y xp . 
We mainly focus on the case where interactions exhibit negative externality and 

are strategic substitutes: 
 

( , ) ( ) 0x y xf x y
y
p¶ ¢= + <
¶

 and 
2

( , ) ( ) ( ) 0x y f x y xf x y
x y
p¶ ¢ ¢¢= + + + <

¶ ¶
. (1) 
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We assume that 0f ¢ <  and 0f ¢¢ £ , to ensure that the conditions in (1) hold. 
This game includes the popular Cournot competition model and is also commonly 
used to study common-pool resource problems such as the tragedy of commons, a 
social dilemma. We also consider extensions to other cases such as positive 
externality and strategic complementary interactions. Letting a  be the degree of 
an agent’s altruism, we suppose that an individual choosing x  against y  with 
the degree of altruism a  derives the utility of ( , ; )u x y a : 

 
( , ; ) : ( , ) ( , )u x y x y y xa p ap= +  

( ) ( ) [ ( ) ( )]xf x y g x yf x y g ya= + - + + - . (2) 

 
If 0a = , we call the agent selfish, because his sole concern is his own material 

payoff. When 0 1a< £ , the agent is altruistic and, especially when 1a = , he cares 
equally for his own and his partner’s payoffs (see Hwang and Bowles (2012)). 
Function u  is sometimes called a behavioral utility function because it determines 
the behavior of altruists (Bester and Guth, 1998). 

Now, we introduce behavioral traits by combining social preferences and the 
degree of rationality based on a level- k  model. First, we suppose that there exists a 
social norm of action which agents with the least cognitive ability naively adopt. 
Much behavioral economics literature reports the existence of such norms in social 
dilemmas (see, e.g., Bowles (2004)). Trait-0 represents the type of agent who 
chooses an action level 0x  dictated by the social norm and is hence termed a naive 
social norm adopter. If the action of trait-0 is equal to the expected action when 
uniformly randomizing over the action space, trait-0 becomes the so-called level-0 
type in the level- k  literature. To study the co-evolution of altruism and bounded 
rationality under various circumstances, we define trait-0 as the trait of a naive 
social norm adopter and examine all possible values of 0x , rather than restricting it 
to the expected value of the uniform random variable. 

To define level- k  agents as selfish and altruistic, we first introduce a best 
response function br  : 

 
( ; ) arg max{ ( ) ( ) [ ( ) ( )]}

x
br y f y x x g x f x y y g ya a= + - + + - , 

 
where our assumptions for f  and g  ensure that “arg max” has a singleton 
element. Following the standard literature on the level- k  model (Stahl and Wilson, 
1995; Nagel, 1995), a level- k  selfish agent’s action ( )k

Sx  is recursively defined as 
that of an agent who best responds to a level-( 1k- ) selfish agent’s action ( 1)k

Sx - , 
that is, 

 
( ) ( 1)( ;0)k k
S Sx br x -= , 
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where (0)
Sx  is equal to 0x , the social norm action. We also define a level- k  

altruist as an agent who best responds to a level-( 1k- ) selfish agent altruistically. 
Thus, the action of the level-k altruist, ( )k

Ax , can be given by 
 

( ) ( 1)( ; )k k
A Sx br x a-= . 

 
By ( )

Sx ¥  we denote the action satisfying ( ) ( )( ;0)S Sx br x¥ ¥= ; i.e., a level-¥  selfish 
agent with action ( )

Sx ¥  adopts a Nash equilibrium action level, and a level-¥  
altruistic agent best responds to the level-¥  selfish agent altruistically: ( ) :Ax ¥ =

( )( ; )Sbr x a¥ . 
Notice that in our definition of a level- k  agent, we implicitly assume that a 

level- k  agent, whether selfish or altruistic, best responds to a selfish level-( 1k- ). 
One may define a level- k  agent differently. For example, we can imagine that a 
selfish agent with level- k  responds to an altruist with level-( 1k- ) by assuming his 
partner is an altruistic agent. By allowing this possibility, we need to consider 2k  
traits in total, whose analysis easily becomes intractable as k  increases. Thus, we 
choose to settle on the current definition to simplify. However, we consider a 
variation in this assumption in Section 4, where we introduce an alternative 
assumption that a level- k  altruist best responds to a level-( 1k- ) altruist. 
Throughout the paper, we use subscripts S  and A  to indicate selfish and 
altruistic agents, respectively. 

In the following analysis, we study the co-evolution of altruistic preferences 
among bounded rational agents by assuming that they adopt some traits from a list 
of traits consisting of ( )k

Sx ’s and ( )k
Ax ’s. The following sets are some examples: a 

trait set consisting of trait-0 and general level- k  traits ( ) ( )
0{ , , }k k

k S Ax x x=T , and a 
trait set consisting of trait-0 and selfish and altruistic traits with levels-1 and 2, 

(1) (1) (2) (2)
0{ , , , , }S A S Ax x x x x=T . 

Now, for a moment, assume three traits with population fraction 

0( , , )S Ap p p p= ÎD , where 0p , Sp , and Ap  are the fractions of trait-0, the selfish 
trait, and the altruistic trait (for some level), respectively and D  is the simplex in 

nR . When 1ip =  for trait i , the state corresponds to a monomorphic (or 
homogeneous) state where all agents adopt trait- i . For instance, (0,1,0)p =  refers 
to the monomorphic population of all selfish agents. Thus we indicate by writing 

1ip =  the monomorphic population state at which all agents adopt trait- i . Since 
individuals are randomly matched to play the underlying game, the expected 
material fitness of individuals with each trait at population state p  is given as 
follows: 

 

0 0 0 0 0 0( ) ( , ) ( , ) ( , ( ))S S A Ap x x p x x p x x pp p p aÕ = + +  

0 0( ) ( , ) ( , ) ( , ( ))S S S S S S A Ap x x p x x p x x pp p p aÕ = + +  
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0 0( ) ( ( ), ) ( ( ), ) ( ( ), ( ))A A A S S A A Ap x x p x x p x x pp a p a p a aÕ = + + , (3) 

 
where 0 , , ( )S Ax x x a  are the actions chosen by trait-0, selfish, and altruistic agents, 
respectively. 

Note that in equation (3), the expected fitness of altruists ( ( )A pÕ ) depends only 
on material payoffs (p ), not on behavioral utility function u , and the degree of 
altruism (a ) can only “indirectly” affect the fitness of altruists thru ( )Ax a . That is, 
evolutionary selection does not account for the behavioral satisfaction derived from 
altruism (the term [ ( ) ( )]yf x y g ya + -  in equation (2)) but determines the long-
run success of the selfish and altruistic traits, based on the same criteria–only on the 
material payoffs. This is because evolutionary selection occurs via an indirect effect 
of preferences on behaviors; the approach adopted in specification (3) is called an 
indirect evolutionary approach (Guth and Yaari (1992); Bester and Guth (1998)). 

Observe that if we interpret pÎD  as a mixed strategy of an underlying game, 
the payoff to strategy pÎD  when played against qÎD  is given by 

 

0 0( , ) : ( ) ( ) ( )S S A Aq p q p q p q pÕ = Õ + Õ + Õ . (4) 

 
Standard literature on evolutionary game theory (for example, Weibull (1995)) 
defines an evolutionarily stable strategy as follow: pÎD  is an evolutionarily stable 
strategy if for every strategy q p¹  there exists some 0e >  such that 

 
( ,(1 ) ) ( ,(1 ) )p p q q p qe e e eÕ - + > Õ - +  (5) 

 
for all 0 e e< < . The idea behind this definition is as follows. Consider a large 
population of agents playing an incumbent strategy pÎD . Suppose that a small 
group of mutants ( e ) playing some other mutant strategy qÎD  enters the 
population. Since the share of mutants is e , the post-entry population consists of 
(1 )p pe e- + . If individuals are randomly matched to play the game, the expected 
postentry payoff to the incumbent strategy p  is given by ( ,(1 ) )p p qe eÕ - +  and 
that of the mutant strategy ( ,(1 ) )q p qe eÕ - + . Thus, (5) requires that the post-
entry payoff to the incumbent strategy is greater than the mutant strategy, as long as 
the fraction of the mutant population remains small, 0e » . 

Since we wish to study the population state indicating the fractions of agents 
adopting each trait, we introduce the following definition. 

 
Definition 1. (i) A population state pÎD  is an evolutionarily stable state if for 
every state q p¹  there exists 0e >  such that 
 

( ,(1 ) ) ( ,(1 ) )p p q q p qe e e eÕ - + > Õ - +  (6) 
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for all 0 e e< < . 
(ii) A population state qÎD  cannot invade a population state pÎD  if there 
exists 0e >  such that 
 

( ,(1 ) ) ( ,(1 ) )p p q q p qe e e eÕ - + > Õ - +   (7) 

 
for all 0 e e< < . 
(iii) We say that trait- i  is an evolutionarily stable trait (ES trait) if the 
monomorphic state ( 1ip = ) at which all agents adopt action ix  is an 
evolutionarily stable state and trait- i  cannot invade trait- j  if the monomorphic 
state ( 1ip = ) cannot invade the monomorphic state ( 1jp = ). 

 
When we check whether a state p  is an evolutionarily stable state or not, we 

sometimes call p  an incumbent population state and an alternative state q  a 
mutant population state (see also Sandholm (2010) for evolutionarily stable states). 

Note that the definition of an evolutionarily stable state is based on a static 
concept. To study the dynamics explicitly, again following the standard literature on 
evolutionary games (Weibull, 1995), we define the replicator dynamics as follows: 

 

( ( ) ( , ))l
l l

dp
p p p p

dt
= Õ -Õ  for {0, , }l S AÎ . (8) 

 
In other words, in the replicator dynamics, the growth rate /ldp

ldt p  of the 
population fraction of trait- l  is given by the difference between the material fitness 
of trait- l , ( )l pÕ , and the average payoff for the population, ( , )p pÕ . This 
highlights the Darwinian selection idea that the higher the fitness of trait- l  relative 
to the average fitness of all traits, the more likely it is for trait- l  to proliferate in the 
long run. 

 
 

III. Is Altruism with Bounded Rationality  
Evolutionarily Stable? 

 
A handy tool to study evolutionary stability in our analysis is an iso-(material) 

payoff locus: 
 

2{( , ) | ( , )x y x yp pÎ =R , for given payoff level }p . 

 
Panel A in Figure 1 shows the familiar shapes of iso-payoff loci. Note that 

negative externality implies that given x , a lower value of y  yields a higher 
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payoff for an agent choosing x . Thus, the lower an iso-payoff locus, the higher is 
the level of payoffs; that is, 1 2 3p p p< < . Furthermore, because of strategic 
substitutability, one’s best response varies inversely with his opponent’s response. 
Thus, the best response line satisfying / 0xp¶ ¶ =  is negatively sloped (Panel B). 
In Panel C, we compare the best responses of altruist and selfish agents. In the 
presence of negative externality, an altruist internalizes the effect of negative 
externality, reducing his action. Thus, for a given level 0y , the best response of the 
altruist agent, 0( ; )br y a , is smaller than the best response of the selfish agent, 

0( ;0)br y  (in Panel C, Figure 1). 
 

[Figure 1] Isoprofit loci, strategic substitutes, and negative externality  
 

 
 

Note: Panel A shows iso-(material) payoff loci; every point on the iso-payoff locus gives the same 
level of payoffs. Further, a lower iso-payoff locus represents a higher payoff level due to 
negative externality; that is, 1 2 3p p p< < . Panel B shows the best response function of 
selfish agents ( ( ;0)br y ). Panel C gives the best response function of altruistic agents 
( ( ; )br y a ), illustrating how an altruist internalizes negative externality. 

 
Now we derive some sufficient conditions for an ES trait. Let p  be an 

incumbent population state. Following the standard arguments in evolutionary 
game theory (Weibull, 1995; Hofbauer and Sigmund, 1998), it is easy to show that 
if the incumbent population state p  satisfies 

 
( , ) ( , )p p q pÕ >Õ  for any state q ,  (9) 

 
condition (6) in Definition 1 holds (see Appendix A for more details). That is, the 
incumbent population state p  is evolutionary stable. Recall that p  satisfying 

1lp =  is the monomorphic state consisting of trait- l  (i.e., the state at which 
everyone adopts trait- l ). We set 1lp =  and if 
 

( , ) ( , )l l i lx x x xp p>  for any other trait i  (10) 
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holds, then condition (10) clearly implies condition (9) (see again Appendix A for 
details). Thus, condition (10) is a sufficient condition for the monomorphic state 

1lp =  to be an evolutionarily stable state. Further, if 
 

( , ) ( , )l l i lx x x xp p<  for some trait i   (11) 

 
holds, condition (6), where 1lp = , cannot be satisfied (see Appendix A). Thus, 
condition (11) is a sufficient condition to ensure that the monomorphic population 
state 1lp =  cannot be an evolutionarily stable state. Hereafter, we call ( , )l lx xp  
the incumbent payoff of trait- l  and ( , )i lx xp  the mutant trait- i ’s payoff against 
incumbent trait- l . 

 
[Figure 2] Illustration of conditions (10) and (11)  
 

 
 

Note: The shaded region in Panel A gives the points at which payoffs are higher than the payoff 
of the incumbent population, ( , )l lx xp . The point ( , )i lx x  in Panel B gives a higher 
payoff than ( , )l lx x , since it is located within the shaded region in Panel A. Panel C shows 
the point ( , )i lx x  that gives a lower payoff than point ( , )l lx x , since it lies outside the 
shaded region. 

 
The analytic advantage of sufficient conditions (10) and (11) is that they can be 

easily checked with iso-payoff loci. To explain this, first note that the payoff for 
incumbent population ( , )l lx xp  in condition (10) or (11) can be represented by an 
iso-payoff curve passing through a point on the 45 degree line (Panel A of Figure 2). 
The payoff for mutant trait- i ’s payoff against incumbent trait- l , ( , )i lx xp , can also 
be identified by the point horizontally away from ( , )l lx x  as in Panels B and C. In 
Panel A of Figure 2, the shaded region of the points gives a higher payoff than 

( , )l lx xp . Thus, if point ( , )i lx x  is located in the shaded region, trait- l  cannot be 
an ES trait because of condition (11) (Panel B of Figure 2). If for any other trait-
i l¹ , point ( , )i lx x  is located outside the shaded region as in Panel C of Figure 2, 
trait- l  is an ES trait because of condition (10). 
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Intuitively, if an incumbent trait action lx  is small compared to the Nash 
Equilibrium (NE, point A in Panel A of Figure 2), a mutant trait with an action 
larger than lx  (but smaller than NE) can invade. In contrast, if an incumbent trait 
action lx  is large compared to the NE (point B in Panel A of Figure 2), a mutant 
trait with an action smaller than lx  (but larger than the NE) can invade. Thus, 
whenever there is a trait with action too small or too large compared to the NE, a 
trait choosing an action closer to the NE can invade this trait. In other words, the 
closer a trait’s action to an NE, the more likely it is for that trait to sustain as an ES 
trait. This leads to the following lemma. 

 
Lemma 1. Let NEx  be the NE action level; that is, ( ;0)NE NEx br x= . Suppose that 
either NEx y x< £  or NEx y x> ³  holds. Then, 
 

( , ) ( , )y y x yp p>  and ( , ) ( , )y x x xp p> .  (12) 

 
Proof. Letting NEx y x< £ , we show that (12) holds. The case where NEx y x> ³  
follows similarly. Let z  be fixed. First, note that from our assumptions of f  and 
g , ( , )zp ×  is concave with respect to the first argument and the first order partial 

derivative of ( , )zp ×  with respect to the first argument vanishes at ( ;0)br z . Thus, 
( , )zp ×  is increasing over [0, ( ;0)]br z . Then, because of strategic substitutability, 

NEy x£  implies ( ;0)NEx br y£ . Thus, we have 
 

( ;0)x y br y< £ . 

 
By taking z y= , since ( , )zp ×  is increasing over [0, ( ;0)]br z , we find that 

 
( , ) ( , ) ( ( ;0), )x y y y br y yp p p< £ . 

 
Similarly, from strategic substitutability, we have ( ;0)NEx br x< , and exactly same 
arguments yield ( , ) ( , ) ( ( ;0), )x x y x br x xp p p< £ .                         □ 

 
Using these tools, we first study level-¥  traits as a benchmarking case. This 

corresponds to the study of Bester and Guth (1998) on the evolution of altruism 
among perfectly rational players. We consider a trait set consisting of trait-0, level-
¥  selfish trait, and level-¥  altruistic trait, ( ) ( )

0{ , , }A Sx x x¥ ¥
¥ =T . The (almost) 

immediate consequence of Lemma 1 is that the level-¥  selfish trait is an ES trait, 
whereas the level-¥  altruist trait cannot be an ES trait. In the case of perfectly 
rational agents (level- ¥  model) with strategic substitutability and negative 
externality, the selfish agents always adopt the NE action (Panel A in Figure 3). 
Then, Lemma 1 implies that the payoff of incumbent selfish agents is greater than 
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those of mutant altruistic agents and mutant trait-0 agents ( ) ( )( ( , )S Sx xp ¥ ¥ >
( ) ( )( , )A Sx xp ¥ ¥  and ( ) ( )( , )S Sx xp ¥ ¥ > ( )

0( , ))Sx xp ¥ . That is, condition (10) is satisfied and 
the level-¥  selfish trait is an ES trait. To check whether an altruistic trait is an ES 
trait or not, note, again from Lemma 1, that the payoff of mutant selfish agents 
adopting the NE is greater than that of incumbent altruist agents ( ) ( )( ( , )S Ax xp ¥ ¥

( ) ( )( , ))A Ax xp ¥ ¥> . Thus, from (11), the level-¥  altruistic trait cannot be an ES trait. 
 

Proposition 1. (Level-¥  Selfish and Altruistic Agents). Consider the evolution of 
traits among the naive, level-¥  selfish, and level-¥  altruistic trait agents: ¥ =T

0{ ,x ( ) ( ), }S Ax x¥ ¥ . Then, the level-¥  selfish trait is an ES trait, whereas the level-¥  
altruistic trait is not an ES trait. 

 
Proof. See Appendix A.                                             □ 

 
[Figure 3] Illustrations of Propositions 1, 2, and 3  
 

 
 

Note: In Panel A, the selfish agents choose the NE and the altruist’s action is smaller than the 
NE (Proposition 1). Since the combination of any mutation trait’s action, x , and the 
incumbent selfish traits’ action, Sx , ( , )Sx x , must lie in the dotted line in Panel A, it is 
clear that no other mutant trait’s action can obtain a payoff greater than ( , )S Sx xp . Panel 
B illustrates Proposition 2 where altruist trait agents can invade the incumbent selfish 
population, since the point ( ) ( )( , )k k

A Sx x  is located within the shaded region. Finally, Panel 
C illustrates Proposition 3 where neither the selfish trait agents (1)( )Sx  nor the naive norm 
adopter 0( )x  as mutants can invade the incumbent altruist population, since (1)

0( , )Ax x  
and (1) (1)( , )S Ax x  are located outside the shaded region, implying that the altruistic trait is an 
ES trait. 

 
However, as emphasized earlier, the above argument assumes that selfish agents 

know how to play the NE. When the agents’ rationality is bounded, this need not be 
the case. Suppose that an altruist with level- k  and a selfish agent with level- k  
best respond to a certain level-( 1k- ), ( 1)k

Sx -  (see Panel B in Figure 3). Further, 
assume that ( 1)k

Sx -  is smaller than the NE. In this case, the actions of the altruist 
and selfish agents with level- k ( ) ( )( , )k k

A Sx x  are larger than the NE. Moreover, the 
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selfish trait’s action ( )( )k
Sx  is larger than the altruistic trait’s action ( )( )k

Ax , because 
the selfish agent does not internalize negative externality. Thus, the selfish trait 
cannot be an ES trait (Lemma 1 and condition (11)). In short, selfish agents choose 
excessive action compared to the NE. Panel B in Figure 3 shows that a mutant 
altruistic trait can invade an incumbent selfish trait, since the point ( ) ( )( , )k k

A Sx xp  is 
located within the shaded region of points with payoff greater than ( ) ( )( , )k k

S Sx xp . 
 

Proposition 2. (Level- k  Selfish Agents). Let 1 k£ < ¥ . Consider the evolution of 
traits among the naive, level- k  selfish, and level- k  altruistic trait agents: k =T

( ) ( )
0{ , , }k k

S Ax x x . If ( )k
NE Ax x< , then the level-k selfish trait is not an ES trait. 

 
Proof. See Appendix A.                                             □ 

 
When agents are boundedly rational, an altruistic trait can also be an ES trait. 

Unlike Proposition 2, this is more likely to occur when the action of level- k  
altruists is smaller than the NE, but that of level- k  selfish agents is larger than the 
NE. The shaded region in Panel C of Figure 3 shows the points with payoffs greater 
than the incumbent altruistic trait’s payoff, (1) (1)( , )A Ax xp . In this case, the mutant 
selfish trait’s payoff (1) (1)( ( , ))S Ax xp  is less than the incumbent altruistic trait’s payoff 

(1) (1)( ( , ))A Ax xp  since point (1) (1)( , )S Ax x  is located outside the shaded region. If the 
naive trait action, 0x , gives a lower payoff as a mutant trait (i.e., (1)

0( , )Ax xp <
(1) (1)( , )A Ax xp ), the altruist trait is an ES trait. When 1k = , we can easily show that a 

level-1 altruist trait is indeed an ES trait (point (1)
0( , )Ax x  is again located outside 

the shaded region). For an arbitrary level- k , there exists a level- k  altruist trait that 
cannot be invaded by the level- k  selfish trait. This is the content of the following 
proposition. 

 
Proposition 3. (Level-k Altruistic Agents). Let 1 k£ < ¥ . Consider the evolution of 
traits among the naive, level- k  selfish, and level- k  altruistic trait agents: k =T

( ) ( )
0{ , , }k k

S Ax x x . There exists A NEx x<  such that if ( ) ( )k k
A A NE Sx x x x< < < , then the 

level- k  selfish trait cannot invade the level- k  altruistic trait. Moreover, if 1k = , the 
level-1 altruistic trait is an ES trait. 
 
Proof. See Appendix A.                                             □ 

 
Recall that we define an evolutionarily stable state as a static concept. How does 

the population fraction adopting each trait evolve over time? To explore this 
question, we use simulations of the replicator dynamics in equation (8). 

The panels in Figure 4 show the time evolution of the population fraction of each 
trait under the replicator dynamics. In each simplex, the vertices at (1,0,0), (0,1,0), 
and (0,0,1) correspond to the monomorphic population states of all altruist (trait A), 
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trait-0, and selfish (trait-S) agents, respectively. Further, the closer a point to the 
given vertex, the more abundant is the corresponding trait in the population. 

From Panels A and B of Figure 4, when the social norm action ( 0x ) is small, the 
altruistic trait, whether in a mixed or monomorphic population, can survive in the 
long run under the replicator dynamics. This confirms Propositions 2 and 3. In 
Panel A, the coexistence of altruistic and trait-0 agents is globally stable, but in 
Panel B, the monomorphic altruistic trait is globally stable. Note that even if the 
majority of agents in the population are selfish when the system starts (near the 
right bottom corner), all agents eventually adopt altruistic traits. 

 
[Figure 4] The solution orbits of the replicator dynamics  
 

 
 

Note: Panels show the solution orbits of the replicator dynamics (8). We take ( ) :f x y+ =
2 2300 ( ) , ( ) :x y g x x- + = , and 1

2a = . In this case, NEx  is 6 and Ax  is 5.71. Panel A 
shows the results of Proposition 2; that is, the level-1 selfish trait cannot be an ES trait. In 
Panel A, when the action of trait 0 is given by 2, the actions of level-1 altruist and selfish 
agents are 8.07 and 8.41, respectively. Panel B presents the results of Proposition 3. In this 
case, the level-1 altruistic trait is an ES trait when the actions of the level-1 altruist and 
selfish agents are 6.47 and 7.18, respectively, in response to the action of trait 0 agents, 

0 4x = . Panel C illustrates the coexistence of the trait 0 and level-1 selfish agents, when the 
trait 0 agent’s action level is 7 and the level-1 altruist and selfish agents choose 4.10 and 
5.42, respectively. 

 
Can the selfish trait also survive in the long run among boundedly rational agents? 

Panel C in Figure 4 illustrates this possibility. In Panel C, the coexistence of selfish 
and trait-0 agents is globally stable. This occurs when the social norm action ( 0x ) is 
sufficiently large so that the selfish agent’s action (hence the altruistic agent’s action) 
is smaller than the NE action level. In this case, the selfish trait with action larger 
than the altruistic trait but still smaller than NE chooses an action closer to the NE 
action level (see Lemma 1). Thus, the selfish trait can do better than altruists. This 
is how a substantial proportion of selfish agents survive in the long run under the 
replicator dynamics. 
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[Figure 5] Stable states under the replicator dynamics in the space of ( 0, xa ) 
 

 
 

Note: Each region shows the asymptotically stable state under the replicator dynamics of a given 
combination of degree of altruism (a ) and the social norm action ( 0x ). We take 

2( ) : 300 ( )f x y x y+ = - +  and 2( ) :g x x= . 

 
Recall that our definitions of the level- k  selfish and altruistic traits depend on 

the social norm action 0x  and the degree of altruism a . To show the effect of the 
social norm action ( 0x ) in relation to the degree of altruism (a ), we present Figure 
5 using simulations. Figure 5 shows the regions of the degree of altruism (a ) and 
the social norm action ( 0x ) where various traits are stable. For instance, in region A, 
the mixed population of the naive and altruistic traits is stable under the replicator 
dynamics. 

First, Figure 5 shows that as the degree of altruism increases, the range of 0x  
supporting the altruistic trait as a globally stable state (region B) enlarges. Thus, the 
more altruistic the agents, the more likely are the altruistic preferences to be 
evolutionary stable. Second, for a given level of a , when 0x  is in the intermediate 
range, the altruistic trait is stable. Thus, when the social norm action is in the 
intermediate range (not in the extreme range), the altruistic trait is more likely to be 
stable. If we interpret the social norm action 0x  as an expected level under 
uniform randomization, the action level would lie in the middle range. Thus, under 
this situation, we expect that altruism co-evolves with bounded rationality. 

We show that when the degree of rationality k  is given by level-1, the altruistic 
trait is evolutionarily stable (Proposition 3), whereas when the degree of rationality 
k  is given by level-¥ , the selfish trait is evolutionarily stable (Proposition 1). Thus, 
there may be a monotonic relation between the stability of the altruistic trait and the 
degree of rationality k . However, in the presence of strategic substitute interactions, 
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if a level-1 selfish action is larger than the NE, the level-2 selfish agent’s action is 
smaller than the NE, and the level-3 selfish agent’s action is larger than the NE and 
so on. Thus, agents with a level even number k  may behave differently from 
agents with a level odd number k , because the best response is to adopt the 
opposite action, which could lead to a cyclic relation between the stability of traits 
and the degree of rationality k . As Figure 6 shows, this is indeed the case around a 
relatively low degree of rationality ( 5,6,7k = ). However, as the degree of rationality 
increases, the monomorphic state where every agent adopts the selfish trait is stable. 
This is because as the degree of rationality increases, the selfish action level 
converges to the NE while the altruistic action converges to another state, namely a 
hypothetical NE in which both players are altruists. 

 
[Figure 6] Relations between the degree of rationality ( k ) and the stability of traits in the 

replicator dynamics 
 

 
 

Note: The horizontal axis and vertical axis represent the degree of rationality k  and the 
population fraction of agents adopting each trait in the replicator dynamics, respectively. 
We use ( ) 300 ( )f x y x y+ = - +  and ( ) 3g x x= . 

 
 
IV. Alternative Assumptions about Traits, Externalities 

and Strategic Interactions 
 

4.1. Alternative Traits 
 
So far, we assumed that a level- k  altruistic agent best responds to a level-( 1k- ) 

selfish agent. Alternatively, the level- k  altruistic agent might believe that the level-
( 1k- ) agent to whom he best responds is an altruist as well. To examine whether 
this modification in assumption changes our results, we consider the following 
variation in the baseline model. Suppose that there are five traits–trait-0, level-1 
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selfish trait, level-2 selfish trait, level-1 altruistic trait, and level-2 altruistic trait. 
Except for level-2 altruistic trait, the other traits are defined as in the previous 
section. A level-2 altruist is assumed to best respond to a level-1 altruist, thus the 
action of a level-2 altruist, AAx , is defined to be ( ; )AA Ax br x a= . To simplify, we 
use the following linear value and cost functions: 

 
( ) ( )f x y a b x y+ = - + , and ( )g x cx= . 

 
Under these assumptions, we explicitly compute the actions of a level-1 selfish 

agent, Sx , and a level-1 altruist agent, Ax , for the social norm action, 0x , as 
follows: 

 

0
0( ;0)

2S

a c bx
x br x

b

- -
= = , 0

0

(1 )
( ; )

2A

a c b x
x br x

b

aa - - +
= = . (13) 

 
Note that if 0a = , then A Sx x=  and if 0a > , A Sx x< , because of negative 

externality. The actions of a level-2 selfish agent, SSx , and a level-2 altruist, AAx , 
are as follows: 

 

0( ;0)
4SS S

a c bx
x br x

b

- +
= = , 

2
0(1 )( ) (1 )

( ; )
4AA A

a c b x
x br x

b

a aa + - + +
= = . 

 
Again, if 0a = , then SS AAx x= . However, differing from (13), if 0a > , then 

AA SSx x> . This is because when altruistic agents best respond to another altruist, 
since an altruist partner’s action is smaller than a selfish agent’s action, the best 
responding altruistic agents react more because of strategic substitutability. 

Recall our basic intuition that an action closer to the NE is more likely to be 
evolutionarily stable than actions further from the NE (Lemma 1). As Figure 5 
illustrates, the action of altruistic preferences is closer to the NE than the action of 
selfish agents, when the social norm action ( 0x ) is in the intermediate range. Thus, 
we expect that when 0x  takes the intermediate value, the altruistic trait is 
evolutionary stable, whereas when 0x  is high, the selfish trait is evolutionarily 
stable. 

 
Proposition 4. Consider the evolution of traits among the naive, level-1, 2  selfish, and 
level-1, 2  altruistic trait agents: 0{ , , , , }S A SS AAx x x x x=T . There exists ,y y  such 
that 
i) when 0y x< , a level-2 selfish trait is an ES trait, 
ii) when 0y x y< < , a level-1 altruistic trait is an ES trait, and 
iii) when 0x y< , a mixed population state consisting of level-1 altruist and level-2 
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selfish agents is evolutionarily stable. 
 

Proof. See Appendix A.                                             □ 
 
Thus, Proposition 4, along with the numerical simulations in Figures 4 and 5, 

corroborates our main results, Propositions 2 and 3. 
 

4.2. Negative Versus Positive Externality and Strategic Complements 
Versus Substitutes 

 
In this section, we consider alternative assumptions for externality and strategic 

relations and examine the roles of externality and strategic interactions in 
facilitating the evolution of altruistic preferences in the long run (see Figure 7). On 
the one hand, the strategic substitute interaction induces the selfish agents to adopt 
an opposite action to the social norm, while the strategic complement interaction 
induces the selfish agents to adopt a similar action to the social norm. On the other  

 
[Figure 7] Negative vs positive externalities and strategic substitutes vs complements. 
 

 
 

Note: These four panels shows four possible combinations of externalities and strategic relations. 
Arrows show the direction in which the payoffs increase. 
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hand, negative externality induces the altruistic agents to adopt an action level 
smaller than the selfish agents, while positive externality induces the altruistic agents 
to adopt an action level larger than the selfish agents. By combining these two effects, 
we will illustrate that our main results may be extended to general settings as 
follows: in environments where a social norm action induces selfish agents to adopt 
an extreme action, whether excessive or insufficient, the altruistic preference may be 
evolutionarily stable in the long run. 

More precisely, consider the effect of strategic relations (see Figure 7 again) first: 
 

Strategic substitutes: 
2

0
x y
p¶
<

¶ ¶
  Strategic complements: 

2

0
x y
p¶
>

¶ ¶
. 

 
Recall that 2 / x yp¶ ¶ ¶  determines the slope of the best response function of a 

selfish agent. Thus, the larger social norm action induces a larger (or smaller) action 
of selfish agents under strategic complementary interactions (or strategic 
substitutable interactions). Next, in the presence of externality, an altruist 
internalizes the effect of externality, thus adopting an action level larger (or smaller) 
than a selfish agent’s action level in the presence of positive externality (or negative 
externality, respectively). Indeed, from ( , , ) ( , ) ( , )u x y x y y xa p ap= + , we easily 
verify that 

 

0
br
a
¶

>
¶

 if and only if 0
y
p¶
>

¶
. 

 
Also, we also assume the following so-called stability condition for the NE (see 

Glaeser and Scheinkman (2000) and the appendix in Hwang and Bowles (2014)) 
 

1
br
y

¶
<

¶
 (14) 

 
Equation (14) requires that one’s action change does not entail more than a 
proportional change in the other’s action; otherwise, an initial small change in one’s 
action will produce ever increasing chain reactions, destabilizing the NE. 

Can the altruistic trait survive in each of the four cases in Figure 7? We have 
already showed that this is the case under the assumptions of negative externality 
and strategic substitutes. As we emphasized, the crucial condition for this result is 
that a trait which adopts an action level closer to the NE is more likely to be 
evolutionarily successful. In particular, Lemma 1 is used to show the sufficiency of 
evolutionary stability. The following lemma provides a generalization of Lemma 1. 
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Lemma 2. Suppose that condition (14) holds and NEx y x< £  or NEx y x£ <  holds. 
Then we have 

 
( , ) ( , )x y y yp p<  (15) 

 
Proof. In this proof, we will ignore the dependence of br  on a . Let NEx y x< £ . 
The other case follows similarly. We first show that ( )y br y£ . If NEy x= , then this 
follows since ( )NE NEx br x= . Thus we suppose that NEy x< . Then by integrating 
equation (14) over [ , NEy x ], we obtain 

 

( ) ( ) ( )
NEx

NE NEy

br
br x br y z dz x y

z
¶

- = < -
¶ò  

 
Thus we find that 

 
( ) ( ) ( )

1NE NE NE

NE NE NE

br x br y x y br x y

x y x y x y

- - -
< = =

- - -
 

 
and by rearranging this equation, we find ( )y br y< . So, we have ( )x y br y< £ . 
Again from the condition for , ( , )zp p ×  is increasing over [ 0, ( )br z ]. Thus, we find 

( , ) ( , ) ( ( ), )x y y y br y yp p p< £  and we obtain the desired results.              □ 
 
Observe that Lemma 2 holds for all four cases (positive or negative externality 

and strategic substitute or complement). However, unlike Lemma 1, ( , )x xp <
( , )x yp  may not hold in the case of strategic complements. Thus we may regard 

Lemma 2 as a partial generalization of Lemma 1. In principle, one can rigorously 
study the evolutionary stability of the selfish trait and the altruistic trait combining 
Lemma 2 with further analysis. However, this task can easily become complicated 
depending on the specific assumptions for the payoff function and other parameters. 
We thus illustrate how the altruistic preferences can be evolutionarily stable, 
replying on the graphical tools developed in Section 3 and the intuition that the trait 
whose action closer to the NE is more likely to be evolutionarily stable (Lemma 2). 

We recall that in the case of strategic substitutes and negative externality, if the 
social norm action is smaller than the NE, then the selfish agents’ action is larger 
than the NE (strategic substitute) and the altruists’ action is smaller than the selfish 
(negative externality). This opens up the possibility that the altruist’s action is closer 
to the NE. We can use the same intuition in the other three cases to examine the 
evolutionarily stability of altruistic preferences (see Figure 8). 
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[Figure 8] Illustration of evolutionary stability of the altruistic preferences 
 

 
 

Note: In each panel, the population state in which every agent adopts Ax  is evolutionarily 
stable. 

 
Take the example of a case with positive externality and strategic complements. 

Suppose that the social norm action, 0x , is smaller than the NE (see the third 
panel in Figure 8). First, because of strategic complements, the selfish action level is 
smaller than the NE, too. Second, because of positive externality, the altruist’s 
action level is larger than the selfish agent. This again leads to the possibility that 
the altruist’s action is closer to the NE and the altruistic trait may be evolutionarily 
stable (see again the third panel in Figure 8). Indeed, if the altruist action level is 
smaller than the NE (but still larger than that of the selfish agent because of positive 
externality), Lemma 2 shows that altruist agents as an incumbent population can do 
better than selfish agents–a necessary condition for the evolutionary stability of the 
altruistic preference. In Figure 8, we illustrate the possible situations under which 
the altruistic trait is evolutionarily stable under these varying assumptions. Also, the 
following table summarizes the underlying causal relations which may lead to the 
evolutionary success of the altruistic trait. 

 
 Causality 

N. Ex. and S. Sub. low 0 S. Sub.x ¾¾¾®  excessive selfish action N. Ex.¾¾¾®  smaller altruist action 

N. Ex. and S. Com. high 0 S. Com.x ¾¾¾®  excessive selfish action N. Ex.¾¾¾®  smaller altruist action 

P. Ex. and S. Sub. high 0 S. Sub.x ¾¾¾®  insufficient selfish action P. Ex.¾¾¾®  larger altruist action 

P. Ex. and S. Com. low 0 S. Com.x ¾¾¾®  insufficient selfish action P. Ex.¾¾¾®  larger altruist action 

 
In this section, we illustrated the possibility of evolutionary stability of the 

altruistic trait. The precise results depend on assumptions for the payoff functions 
and other parameters and we thus leave complete analysis for future research. 
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V. Conclusion 
 
In this paper, we examined the evolution of altruistic preferences among 

bounded rational agents when interactions are strategic substitutes and exhibit 
negative externality. We combined the indirect evolutionary approaches of 
preference evolution and the level- k  model. Using this model, we identified the 
conditions under which an altruistic trait is evolutionary stable and a selfish trait is 
evolutionarily unstable. Few studies have theoretically examined the relationship 
between social preferences and bounded rationality, despite numerous experimental 
and empirical findings of interdependence between them. Our results hence fill the 
theoretical gap in the existing literature under empirically more plausible 
assumptions for the rationality of agents. 

In an extension, we might empirically or experimentally verify the conditions in 
Propositions 2, 3, and 4. Since the evolutionary stability of altruistic preferences 
depends on the degree of altruism and the social norm action, as in Figure 5, 
whether coevolution of preferences and bounded rationality actually occurs in a 
specific context depends on the specific values of 0x  and a . By combining our 

theoretical results with an experimental study, we may identify more plausible 
conditions for co-evolution. 
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Appendix A. Appendix 
 

Sufficient conditions for an ES trait: conditions in (9), (10), and (11) 
 
These easily follow from the standard arguments in evolutionary game theory 

(Weibull, 1995; Hofbauer and Sigmund, 1998). We first show that (9) implies (6). If 
( , ) ( , )p q q qÕ ³Õ , then we choose any 1e <  and if ( , ) ( , )p q q qÕ <Õ , then we 

choose 
 

( , ) ( , )
1

( , ) ( , ) ( , ) ( , )
p p q p

p p q p q q p q
e Õ -Õ
= <
Õ -Õ +Õ -Õ

. 

 
Then if 0 e e< < , (6) is satisfied. Next, we show that (10) implies (9). Recall 

that p  satisfying 1lp =  is the state where all agents choose trait- l . Then 
 

( , ) ( , ) ( , ) ( , ) ( , )l l i l l i i l l
i i

p p x x q x x q x x q xp p pÕ = = > = Õå å . 

 
Next, suppose that condition (11) holds. Then we need to show that for all 

0e > , there exists 0 e e< <%  such that 
 

( ,(1 ) ) ( ,(1 ) )l l i i l ix x x x x xe e e eÕ - + £ Õ - +% % % % . (A.1) 

 
Let 0e >  be given. We similarly choose e  as before. That is, if ( , )i ix xp ³

( , )l ix xp  then we choose any 1e <  and if ( , )i ix xp < ( , )l ix xp , then we choose 
 

( , ) ( , )
1

( , ) ( , ) ( , ) ( , )
i l l l

i l l l l i i i

x x x x

x x x x x x x x

p pe
p p p p

-
= <

- + -
. 

 
We let : min{ , }e e e=% . Then it is easy to verify that (A.1) holds. Thus lx  

cannot be an ES trait. Finally, suppose that ( , ) ( , )l l i lx x x xp p>  for some i . Then 
by following the same argument, it is easy to show that (7) holds. Thus ix  cannot 
invade lx . 

 
Proof of Proposition 1. From the first-order condition and our assumptions of f  
and g , we obtain 

 

( ; ) 0
br

y a
a
¶

<
¶

 for any yÎR . (A.2) 
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Equation (A.2) shows that the action of a selfish agent is always larger than that 
of altruists, because of negative externality. Thus, a level-¥  altruist (for any degree 
a ) adopts ( )

A NEx x¥ <  because a level-¥  selfish agent chooses ( )
S NEx x¥ = . From 

Lemma 1, we have 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0( , ) ( , ), ( , ) ( , )S S A S S S Sx x x x x x x xp p p p¥ ¥ ¥ ¥ ¥ ¥ ¥> >  and  

( ) ( ) ( ) ( )( , ) ( , )S A A Ax x x xp p¥ ¥ ¥ ¥> . 

 
Then equations (10) and (11) show that the level-¥  selfish trait is an ES trait 

and that the level-¥  altruist trait is not an ES trait.                       □ 
 

We next prove Proposition 2. 
 

Proof of Proposition 2. Let ( )k
NE Ax x< . Negative externality again implies that 

( ) ( )k k
A Sx x< . Thus, we have ( ) ( )k k

NE A Sx x x< < . From Lemma 1, we have 
 

( ) ( ) ( ) ( )( , ) ( , )k k k k
S S A Sx x x xp p<  

 
and equation (11) shows that the selfish trait with level- k  cannot be an ES trait.□ 

 
To prove Proposition 3, we need the following lemma. To do this we let ANEx , 

and ASNx  be 
 

( ; ),ANE ANEx br x a=  and ( ; )NE ASNx br x a= .  (A.3) 

 
Lemma 3. Suppose that ANEx  and ASNx  are given by (A.3). Then there exists AASx  
such that 

 
( ( ;0), ( ; )) ( ( ; ), ( ; ))AAS AAS AAS AASbr x br x br x br xp a p a a=  

 
and 

 

ASN AAS ANE NEx x x x< < < . 

 
Proof. First, from our assumptions for f  and g  (i.e., strategic substitutes), we 
have 

 

( ; ) 0
br

y
y

a¶
<

¶
 for any [0,1]a Î . (A.4) 
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Let [0,1]a Î  be fixed. From equations (A.2), (A.3), and (A.4), we have ANEx <

NEx , whereas equations (A.3) and (A.4) imply ASN ANEx x< . Thus, we have ASNx

ANE NEx x< < . Next, we show that there exists a unique [ , ]AAS ASN ANEx x xÎ . We 
define :Y ®R R  such that 

 
( ) : ( ( ;0), ( ; )) ( ( ; ), ( ; ))y br y br y br y br yp a p a aY = - . 

 
We then check the values of function Y  at ASNx  and ANEx . By the definition 

of Nash Equilibrium, for any NEs x¹ , ( , ) ( , )NE NE NEx x s xp p> . This implies that 
 

( ) ( ( ;0), ) ( , ) 0ASN ASN NE NE NEx br x x x xp pY = - < . (A.5) 

 
Moreover, from the definition of best responses, we have 
 

( ) ( ( ;0), ) ( , ) 0ANE ANE ANE ANE ANEx br x x x xp pY = - > . (A.6) 

 
For y  such that ASN ANEx y x< < , we have 
 

( ; ) ( ( ; );0) ( ;0)ANE NEy x br y x br br y br ya a< < < < < . 

 
Below, we denote by 1s  and 2s  the first and second arguments of p  to avoid 

confusion. Since the payoff function p  is concave, we have 
 

1

( ( ; ), ( ; )) 0br y br y
s
p a a¶

>
¶

, 
1

( ( ;0), ( ; )) 0br y br y
s
p a¶

<
¶

 

 
and from negative externality and strategic substitutes, 

 

2 2

( ( ;0), ( ; )) ( ( ; ), ( ; )) 0br y br y br y br y
s s
p pa a a¶ ¶

- <
¶ ¶

 

 
Therefore, for y  such that ASN ANEx y x< < , we have 
 

1 1

( ( ;0), ( ; )) ( ;0) ( ( ; ), ( ; )) ( ; )
d br br

br y br y y br y br y y
dy s y s y

p pa a a aY ¶ ¶ ¶ ¶
= -
¶ ¶ ¶ ¶

 

2 2

( ( ;0), ( ; )) ( ; ) ( ( ; ), ( ; )) ( ; )
br br

br y br y y br y br y y
s y s y
p pa a a a a¶ ¶ ¶ ¶

+ -
¶ ¶ ¶ ¶

 

0> . 
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which shows that Y  is increasing. Thus, from (A.5) and (A.6), we have the 
unique [ , ]AAS ASN ANEx x xÎ  such that ( ) 0AASxY = .                      □ 

 
Next we prove Proposition 3. 

 
Proof of Proposition 3. From Lemma 3, we first find AASx . Note that if ASNx y<

AASx< , then ( ) 0yY < . Let ( ; )A AASx br x a= . Then, ( ) ( )k k
A A NE Sx x x x< < <  implies 

( 1)( ; ) ( ; ) ( ; )k
AAS S ASNbr x br x br xa a a-< < , which in turn implies that 

 
( 1)k

ASN S AASx x x-< <  (A.7) 

 
because of negative externality. Since 

 
( 1) ( 1) ( 1) ( 1) ( 1)( ) ( ( ;0), ( ; )) ( ( ; ), ( ; ))k k k k k
S S S S Sx br x br x br x br xp a p a a- - - - -Y = -  

( ) ( ) ( ) ( )( , ) ( , ) 0k k k k
S A A Ax x x xp p= - < , 

 
we find that 

 
( ) ( ) ( ) ( )( , ) ( , )k k k k
S A A Ax x x xp p< . (A.8) 

 
and find that the selfish trait with level- k  cannot invade the altruist trait with 
level- k . Now suppose that 1k = . Then from equation (A.7) we have (0)

0 Sx x= <

AASx < ANEx . Also since ( ; ) ( ; )A AAS ANE ANEx br x br x xa a= > =  and 0 ANEx x< , we 
find (1)

0 A A NEx x x x< < < . Thus, from Lemma 1, we find (1) (1) (1)
0( , ) ( , )A A Ax x x xp p>  

and equation (10) implies that the altruistic trait with level-1 is an ES trait.     □ 
 

Next we prove Proposition 4. 
 

Proof. With the action level of each trait, we can explicitly calculate the payoffs of all 
agents for a given action of trait-0, 0x . From this, we obtain the following results 
(see Kim (2013) for more details). 

 
First, when trait-0 chooses smaller than (3 4 )

a c
ba

-
+ , trait-0 is strictly dominated, and 

if no one adopts trait-0, the level-1 altruistic trait dominates the level-1 selfish trait. 
When no agent adopts trait-0 and the level-1 selfish trait, the level-2 selfish trait 
dominates the level-2 altruistic trait. For level-1 altruists and level-2 selfish agents, 
we obtain 

 
( , ) ( , )A A SS Ax x x xp p<  and ( , ) ( , )SS A A SSx x x xp p< . 
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Thus, the mixed population of level-1 altruistic and level-2 selfish corresponds to a 
unique NE. 

Second, when the action of trait-0, 0x , satisfies 0(3 4 ) (3 2 )
a c a c

b bxa a
- -

+ +< < , trait-0 is 
strictly dominated as well. At the same time, the level-2 selfish trait dominates the 
level-2 altruistic trait. Without these traits, the level-1 altruistic trait dominates the 
level-1 selfish trait and the remaining traits obtains 

 
( , ) ( , )SS A A Ax x x xp p<  and ( , ) ( , )SS SS A SSx x x xp p< . 

 
Thus, level-1 altruistic trait corresponds to a uniquely strict NE. 

Finally, when the action of trait-0, 0x , is larger than (3 2 )
a c

ba
-

+ , the level-2 selfish 
trait dominates the level-2 altruistic trait and trait-0. Further, it dominates the level-
1 altruistic trait when no one adopts the level-2 altruistic trait and trait-0. Then, 
level-1 and level-2 selfish traits have 

 
( , ) ( , )S S SS Sx x x xp p<  and ( , ) ( , )S SS SS SSx x x xp p= . 

 
This implies that level-2 selfish trait corresponds to the NE. 

In these three cases, we found each unique NE by iterated deletion of strictly 
dominated strategies and we can show that the monomorphic state of all gents 
using an unique NE is an evolutionarily stable state as before. Now we set 

(3 4 ): a c
by a

-
+=  and (3 2 ): a c

by a
-

+= , to obtain the desired results.                  □ 
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