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Tests for Detecting Probability Mass Points* 

Byung-hill Jun** ∙ Hosin Song*** 

The objective of this paper is developing test statistics to detect the presence of mass points 
when data are possibly generated by a mixture of a continuous and a discrete distribution. 
To serve our purpose we propose two versions of the probability mass point (PMP) test. We 
derive the limiting distributions of the PMP test statistics under the null and alternative 
hypothesis by exploiting the asymptotic difference between two kernel density estimators 
with different bandwidths. Specifically, the proposed PMP test statistic is shown to converge 
to either the standard normal distribution or a linear transformation of a positive Poisson 
distribution at a non-mass point depending on bandwidths choice, while it diverges to 
infinity at a mass point. Numerical experiments are conducted to demonstrate the validity of 
our proposed tests. Korean taxpayers’ bunching behavior is considered as an empirical 
application. 
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8 
I. Introduction 

 
Empirical researchers are often confronted with variables massed at certain values. 

Examples of such variables include subjective probability (Bruine de Bruin et al., 
2000, 2002), firm’s earnings (Burgstahler and Dichev, 1997), income (Saez, 2010; 
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Chetty et al., 2011), job tenure (Ureta, 1992), household expenditure (Pudney, 
2008), working hours (Otterbach and Sousa-Poza, 2010), age at retirement (Burtless 
and Moffitt, 1984), and neonatal mortality (Arulampalam et al., 2017). The 
recognition of the presence of mass points promotes the use of bunching estimation 
among economists. The bunching estimation exploits the fact that the magnitude of 
mass points reveals useful information in identifying the structural parameters. For 
example, Saez (2010) showed that in a static labor supply model without any 
frictions, the size of massed observations at a kink point is determined by the 
elasticity of earnings and the magnitude in the change in the marginal tax rate. Saez 
(2010) applied the idea to the administrative tax return data in estimating the 
elasticity of earnings. Many empirical works, especially in the literature of tax 
policies, adopted the approach in Saez (2010), and thus attempted to measure the 
bunching at a given location in estimating a structural parameter (e.g., Chetty et al., 
2011; Bastani and Selin, 2014; Kleven et al., 2014; Almunia and Lopez-Rodriguez, 
2018). 

There are several arguments trying to explain these mass points (e.g., personal 
characteristics associated with rounding or recollection errors (Budd and Guinnane, 
1991; Bruine de Bruin et al., 2000, 2002), the nature of a survey question (Holbrook 
et al., 2014), and the optimization behavior associated with an incentive 
(Burgstahler and Dichev, 1997; Saez, 2010; Chetty et al., 2011). Regardless of the 
disagreement about the sources generating the mass points, it has been widely 
acknowledged that neglecting the presence of mass points leads to the failure of 
conventional statistical inference in many situations (Heitjan and Rubin, 1991). 
Many studies addressed the issues arising from the prevalence of mass points in 
detail (Petoussi et al., 1997; Pudney, 2008; Bar and Lillard, 2012; Crawford et al., 
2015; Barreca et al., 2016; Groβ and Rendtel, 2016; Zinn and Würbach, 2016; 
Arulampalam et al., 2017). They showed that some popular estimates including the 
maximum likelihood estimate, the dynamic generalized method of moment 
estimate, the regression-discontinuity estimate, and the kernel density estimate are 
likely to suffer from biases unless the stochastic process generating mass points is 
well dealt with in estimating the models. 

Our work shares the concern related to the mass points in these lines of studies. 
However, instead of suggesting a correction for problems resulting from the mass 
points in a specific model, we aim to provide a way to check whether or not data 
used in the analysis are massed at some values in a general setting. Similar attempts 
have been made in previous works. For example, Burgstahler and Dichev (1997) 
and Saez (2010) reported that some choices by individuals or firms are likely to 
cluster around some specific points because of their economic incentives. Takeuchi 
(2004) is more closely related to our work. Motivated by a histogram approach in 
Burgstahler and Dichev (1997), he proposes a simple statistical test to see if there is 
a jump in the distribution function by using a property of the smoothness of a 
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distribution function. 
The purpose of this study is to propose a test to detect the probability mass points 

when they are present among non-mass observations. Specifically, we attempt to 
develop a test for a hypothesis that there exists a probability mass at a given location. 
We presume that mass points are generated by a mixture of a continuous and a 
discrete distribution. Hence, a parameter capturing the probability of a mass point 
should be introduced when implementing a test for a single point. Under the null 
hypothesis of no probability mass at a given value, this probability is zero, and thus 
it is located on the boundary of the parameter space. As a result, standard regularity 
conditions for the log-likelihood (LR) test do not hold as in earlier works testing a 
mixture distributional assumption (Chernoff and Lander, 1995; Gassiat and 
Keribin, 2000; Cho and White, 2007, 2010; Cho and Han, 2009). In such a situation, 
the LR test statistic does not follow the standard asymptotic distributional results. 
One advantage of our proposed PMP test does not have to deal with such potential 
technical difficulty. The PMP test is easy to conduct since it can be built on two 
kernel density estimators and exhibits simple limiting distributional properties. 
Specifically, this test exploits the asymptotic difference between two kernel density 
estimators with different bandwidths. Depending on bandwidths choice, the 
proposed PMP test statistic converges to the standard normal distribution or a linear 
transformation of a positive Poisson distribution at a non-mass point, while it 
diverges to infinity at a mass point. Compared with Takeuchi (2004), our PMP tests 
are more general since the PMP tests incorporate a general kernel density estimator, 
while Takeuchi (2004) considers histograms with a fixed bin. 

The paper is organized as follows. In Section II, we introduce a mixture model to 
represent the situation where mass points are present among non-mass points. 
Assumptions for the PMP tests are also stated in Section II. In Section III, we 
propose the PMP tests and show their asymptotic properties. Section IV discusses 
the local power properties of the PMP tests. In Section V, we conduct some 
numerical experiments to evaluate the performance of our proposed tests. In Section 
VI, we apply the PMP tests to the Korean wage earners’ expenditure data to 
investigate the presence of a bunching behavior. Section VII has concluding 
remarks. Proofs and other supplementary explanations are presented in the 
Appendix. 

 
 

II. Assumptions 
 
Let L1 , , nY Y  be random variables which are independently drawn from an 

identical distribution. We consider a case where the distribution of these random 
variables possibly has mass points on its support. The location of mass points is 
assumed to be unknown to researchers a priori. Specifically, we consider a mixture 
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model stated in Assumption 1. 
 

Assumption 1. 1 , , nY Y¼  are independently and identically distributed (i.i.d.) with the 

following distribution function 0( )F y : 

 

0 1 2( ) ( ) (1 ) ( )y pF y p F yF = + - , (1) 

 
where 0 1p£ £ , 1 1 1( ) ( ) ( )J

j j jF y f d I y d== å ³ , 1( )f y  is a probability mass function 
(pmf) with support 1{ , , }JD d d= ¼ , J < ¥ , and 2 2( ) ( )yF y f t dt-¥= ò , 2( )f y  is a 
probability density function (pdf) with support CÌ ¡  such that 2( )f y  is twice 
continuously differentiable at any point y CÎ . Also assume that int( )D CÌ  where 
int( )C  is the interior of C .  
 

Assumption 1 models the presence of some mass points among continuous 
observations. Restrictions for a continuous pdf 2( )f y  in Assumption 1 are standard 
in many econometric studies. These restrictions are used to derive the asymptotic 
properties of the PMP test statistics in Section 3. The mass points are assumed to be 
present on the interior of C . This fact complicates the identification of the set of 
mass points D . 

As shown in the following examples, the variables examined in the related 
literature are described by the model (1). 
 
Example 1. Bruine de Bruin et al. (2000, 2002) find that an excessive fraction of 
individuals choose 50% when they report their subjective probabilities. In this 
example, Y  is a reported subjective probability, {0.5}D = , and { :C y= Î¡
0 1}y£ £ . 
 
Example 2. Zinde-Walsh (2010) discusses a bunching in earnings when anticipated 
lump-sum transfers are made to workers with earnings less than a threshold 1d . In 
this example, Y  is after-transfer earnings, 1{ }D d= , and { : 0}C y y= Î ³¡ . 
 
Example 3. Saez (2010) notices the bunching of self-employed workers’ earnings at 
the kinked points of income taxes. Denote the kinked points by 1 2, , , Jd d d¼ . In this 
example, Y  is the earnings, 1 2{ , , }, JD d d d= ¼ , and { : 0}C y y= Î ³¡ . 
 
Example 4. Zinn and Würbach (2016) consider the digit preference patterns when 
individuals report their incomes. Specifically, individuals are assumed to tend to 
report multiples of 100, 500, and 1000 instead of their true incomes. Y  is the 
reported income, = = = = ¼0 0{ : 100, 500,1000; 0,1,2, }D d kd d k  and = Î{C y

³¡ : 0}y . Similar distributions are employed in describing the reported current job 
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starting year (Ureta, 1992) and the reported days between an infant’s birth and 
death (Arulampalam et al., 2017). 
 

Although the presence of mass points has been mostly regarded as a statistical 
problem, some economic research investigates the effects of mass points on 
conventional estimates. Via Monte Carlo simulations, Torelli and Trivellato (1993) 
and Wolff and Augustin (2003) show that the maximum likelihood estimation is 
likely to generate biased estimates in duration models if mass points generating 
process is not take into account in constructing a likelihood function. In a panel 
analysis of household’s energy consumption, Pudney (2008) shows that the neglect 
of mass points leads to substantial biases in some popular dynamic panel estimators. 
A recent study by Barreca et al. (2016) reports that the regression-discontinuity 
estimator is inconsistent when mass points exist in the distribution of a running 
variable, which determines the treatment status. 

Motivated by this line of studies, our primary interest lies in testing whether there 
is probability mass at a certain point. If the test results indicate the presence of 
probability mass points, then a researcher might want to remedy associated failures 
of conventional estimates or recover the underlying distribution of a true variable 
depending on his or her own interest.1 

Throughout the paper, we denote a kernel density estimator at 0y  with a 
bandwidth 1h  by 0 1)(ˆ ;f y h . To define the PMP tests, let us state the assumptions 
for a kernel ( )K ×  and a bandwidth h . 
 
Assumption 2. The kernel ( )K ×  satisfies the following conditions: 
(i) ( ) 1K u duò = , ( ) 0uK u duò = , and 2 ( )u K u duò < ¥ ,  
(ii) ( )K ×  is uniformly bounded,  
(iii) | |lim | | ( ) 0u u K u®¥ = ,  
(iv) ( )K ×  is symmetric,  
(v) 2| ( )|K s dsd+ò < ¥  for some 0d > , 
(vi) ( )K ×  is Lipschitz-continuous. In other words, there exists a finite constant d*  
satisfying 
 

| ( ) ( )| | |K x K y d x y*- £ -  for all ,x y . 

 
Assumption 3. A bandwidth h  satisfies 0h¯  and nh®¥  as n®¥ . 
 

Assumptions 2 and 3 are standard in the literature of kernel density estimation. 

____________________ 
1 For example, as mentioned in Barreca et al. (2016) the mass points can be regarded as the results 

of measurement errors (e.g., the digit preference, recollection errors, and rounding errors). In such a 
case, the distribution of a true variable with no measurement error can be an object of interest. 
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The Lipschitz-continuity condition in Assumption 2(vi) is required to evaluate the 
variance of 0 1 0 2

ˆ ˆ( ; ;) ( )f y h f y h- . As mentioned by Newey and West (1994), a wide 
class of kernels satisfy the Lipschitz-continuity condition so that it is not so 
restrictive.  

A standard kernel density estimator 0
ˆ( ; )f y h  defined as 1

0 1
ˆ( ; ) n

inhf y h K== å
0( )iy Y

h
-  is consistent when 0p = . However, the consistency of a kernel density 

estimator fails when the data generating process is given by (1) with 0p >  (Zinde-
Walsh, 2008). This finding is related to the following results on the mean and 
variance of a kernel density estimator. 

 

2 2
0 0 2 0

1
[ ( ; )] ( (0) (1) (1 )() ( (ˆ ) ))E f y h p y K o p f y h o h

h mk
æ ö= + + - + +ç ÷
è ø

  (2) 

 
and 

 

2
0 0 02 2

1 1
[ ( ; )] ( (1 ( (0)ˆ ) ))V f y h p y p y K o

nh nh
æ öæ ö= - +ç ÷ç ÷

è øè ø
  

1 1
(1 ) Vp o

nh nh
kæ öæ ö+ - +ç ÷ç ÷

è øè ø
,  (3) 

 
where 0 1 0) ( )(p y pf y= , (2) 21

2 02 )( ( )f y s K s dsmk = ò , 2
2 0 )( ( )V f y K s dsk = ò , and (2)

2f  
is the second derivative of 2( )f × . 

Recognize that when 0p = , equations (2) and (3) are reduced to the well-
known results for the mean and variance of a kernel density estimator in literature. 
However, when 0p > , a kernel estimator at a mass point 0y  has exploding terms 
in the asymptotic bias and variance. As a result,  

 

® ¥0( ;ˆ )
p

f y h  for 0y DÎ   (4) 

 
and 
 

® -0 2 0( ; ) (1 )ˆ ( )
p

f y h p f y  for 0y CÎ . (5) 

 
 

III. PMP Test 
 
Let 0y  be the point where we want to test the presence of positive probability 

mass. The null and alternative hypotheses are stated as follows:  
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= >0 0 1 0: ( 0 vs. : ( 0) )H p y H p y . 

 
Under the null hypothesis, the parameter 0( )p y  is located on the boundary. In 

this situation, the LR test statistic does not have a nice limiting distribution. Instead 
its limiting distribution is described by a functional of a Gaussian process (Andrews 
(2001)). The boundary parameter problem received much attention in earlier works 
testing the hypothesis of a mixture distribution (Chernoff and Lander, 1995; Gassiat 
and Keribin, 2000; Cho and White, 2007, 2010; Cho and Han, 2009). As in these 
works, one can use the LR test by establishing the limiting distribution of the LR 
test statistic in the given model. 

To overcome the technical difficulty in deriving the asymptotic distribution 
results for the LR test statistic, we propose an alternative test by adopting the idea of 
Burgstahler and Dichev (1997) and Takeuchi (2004). Burgstahler and Dichev (1997) 
and Takeuchi (2004) suggest using the smoothness of a density function to test 
whether a distribution function is continuous at a specific point. Their suggestions 
are implicitly based on the facts that if there is no probability mass at 0y , a kernel 
density estimator with a suitable bandwidth is consistent and the difference between 
two kernel density estimators using different suitable bandwidths is well 
approximated by a normal distribution. 

We attempt to generalize this approach and present the PMP tests. The PMP 
tests use the asymptotic properties of the difference between 0 1)(ˆ ;f y h  and 

0 2 )(ˆ ;f y h , 1 2h h¹ . More precisely, the PMP test statistic is given by  
 

0 1 0 2
ˆ ˆ( ) ( ); ; )(nT f y h f y h= D - , 

 
where nD  is a normalizing factor. 

Let 1
1h n a-µ  and 2

2h n a-µ  where 1 2, 0a a > . Without loss of generality, 
assume 1 2h h< . A bandwidth 2h  satisfies Assumption 3 while a bandwidth 1h  is 
allowed to violate Assumption 3. As a result, 0 1)(ˆ ;f y h  is not necessarily consistent 
to 2 0( )f y . In the following parts of this section, we show that the distribution of the 
PMP test statistic T  depends on whether or not 0 1)(ˆ ;f y h  is consistent. 
Exploiting these distributional results, we present two versions of the PMP tests LT  
and ST .  

 
3.1. PMP Test with 2 1 1a a£ <  

  
In this subsection, we consider the case where 1 1a <  such that 1h  also satisfies 

Assumption 3 and thus, 0 1)(ˆ ;f y h  is a consistent estimator of 2 0 )( .f y  To 
characterize the relative magnitude of 1h  and 2h , define c  as the limit of the 
ratio of two bandwidths, that is, 1 2lim /c h h= . Given that 1 2h h< , there are two 
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possible cases. The first case is that 1h  and 2h  have the same order of magnitude 
( 1 2a a= ) with 1 2h ch= , (0,1)cÎ . The other case happens when 1 2a a> .2 In that 
case, 1h  decays to 0 faster than 2h  so that 0c = . 

Hereafter, suppress 0y  in 0
ˆ( ; )f y h  so that ·1( )f h  and ·2( )f h  denote two 

estimators 0 1
ˆ( ; )f y h  and 0 2

ˆ( ; )f y h . The PMP test statistic LT  when 0c >  is 
formally stated as follows. 

 
· ·

1 1 2

0

( ) ( )( )

ˆL

nh f h f h
T

V

-
= , 

 
where 0̂V  is given by ·

0 2
ˆ ( )cV k f h=  for a constant  

 
2(1 ) ( ) 2 ( ) ( )ck c K s ds c K s K cs ds= + -ò ò . 

 
Theorem 1 states that the standardized difference between two kernel density 

estimators is well approximated by the standard normal distribution under 

0 0: 0)(H p y = , and explodes under 1 0: 0)(H p y > .  
 

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. In addition, bandwidths 1h  
and 2h  satisfy Assumption 3 and 5

2 0nh ®  as n®¥ . Then, for any 0y , 
d

LT ®
(0,1)N  under 0 0: ( 0) .H p y =  Under 1 0: 0)(H p y ,>  LT  tends to infinity with 

probability 1. 
 
In addition to the conventional regularity conditions for a bandwidth, Theorem 1 

requires 5
2 0.nh ®  Then it follows that 1

2 15 1a a< £ < . Under 0H , the order of 
the asymptotic bias and variance are 2

2h  and 11 / ( ),nh  respectively. The 
restrictions on 1a  and 2a  guarantee that neglecting the asymptotic bias in LT  
has no effect on the limiting distribution as long as the first-order is concerned. 
Thus, Theorem 1 can be modified as  

 
· · · ·- - -

®1 1 2 1 2

0

( ) ( ) ( ) ( )])

ˆ

( [
(0,1)

dnh f h f h E f h f h
N

V
 under 0 0: ( 0) .H p y =  

 
A close look at the proof of Theorem 1 shows that the asymptotic normality of 

LT  under 0H  is related to the asymptotic distributional property of a kernel 
density estimator in a standard setting. This fact is more clearly revealed when 

1 2a a> . In such a case, the convergence rate of ·2( )f h  is faster than that of ·1( )f h  
____________________ 

2 We are grateful to an anonymous referee who suggested the extension of LT  to this general case. 
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under 0 0: ( 0) .H p y =  A direct manipulation using the faster convergence rate of 
·

2( )f h  and 0c =  provides  
 

·
1

2
0

01(
(1

( ) ( )

( )( )
)

)
L p

nh f h f
T o

f y K ds

y

s

-
= +

ò
 under 0 0: 0)(H p y = . 

 
Recognize that the first term in the right-hand side is the standardized kernel 
density estimator, whose asymptotic distribution is standard normal in a standard 
setting. 

Burgstahler and Dichev (1997) and Takeuchi (2004) compare the difference 
between ˆ

jp  and the simple average of 1
ˆ

jp -  and 1
ˆ ,jp +  where ˆ

jp  is the 
empirical frequency of the j -th bin with center 0y  and radius / 2.h  More 
specifically, the test statistic of Burgstahler and Dichev (1997) and Takeuchi (2004) 
is given by  

 

1 1†

1 1

ˆ ˆ ˆ)( / 2

( /ˆ ˆ ˆ2( ) )
j j j

j j j

p p p
T

V p p p
- +

- +

+ -
=

+ -
. 

 
A direct calculation provides  

 

· ·1 1 3
( (3 / 2) ( / 2)

2 2

ˆ ˆ
ˆ )j j

j

p p
p h f h f h- ++

- = - , 

 
where ·( )f h¢ , / 2h h¢ =  or 3 / 2h  is a uniform kernel density estimator of 

0( )f y  with a bandwidth h¢ . It can also be shown that 
 

1 1 0
ˆ ˆ ˆ( ) )

3
( / 2 )

2
(j j j

h
V p p p hf y o

n n- +
æ ö+ - = + ç ÷
è ø

 

 
and 

  

0

3 3
( (3 / 2) ( / 2))ˆ (

2 2
ˆ )

h
V h f h f h hf y o

n n
æ ö æ ö- = +ç ÷ ç ÷
è ø è ø

. 

 
Therefore, †T  can be interpreted as a statistic LT  using a uniform kernel and a 
set of bandwidths with 1 / 3c = . This interpretation reflects the selection of the set 
of bandwidth. A close look at the proof of Theorem 1 implies that a test statistic 

LT  does not converge to the standard normal distribution without undersmoothing 
even under 0H . Thus, conventional critical values fail to generate the desired 
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rejection probabilities under 0H . 
The effect of c  is not immediately revealed in the limiting distribution of LT . 

However, a look at the proof of Theorem 1 hints at the channel through which the 
choice of c  influences the size and power properties of LT  in a finite sample. 
For given n  and bandwidths, the size property partly depends on the magnitude 
of the bias, which is proportional to 21 (1 / )1

ck
c-  under 0H . Similarly, when n  

and bandwidths are given, the power increases with the magnitude of the bias, which is 
proportional to 1 (1 )

ck
c-  under 1H .  

 
3.2. PMP Test with 2 1 1a a< =  

 
Theorem 1 requires that bandwidths 1h  and 2h  satisfy Assumption 3 so that 

the resulting kernel density estimators are consistent. Now 1h  is allowed to violate 
Assumption 3. Specifically, we consider a special case where one bandwidth 1h  is 
given by 1 0 /h c n=  for a positive constant 0c  while the other bandwidth 2h  
satisfies Assumption 3. 

For this special case we use a uniform kernel ( ) (| | 1 / 2)uK u I u= £ , where ( )I ×  
is the indicator function. Denote the uniform kernel density estimator by ·( )u jf h , 

1,2j = .  
 

· 0
1

1
)( n i

u j i u
j j

y Y
f h K

nh h=

æ ö-
= å ç ÷ç ÷

è ø
, 1,2j = . 

 
A uniform kernel ( )uK u  satisfies Assumption 2. Moreover, ck  is 1 so that 

·
,0 2

ˆ ( )u c uV k f h=  is ·2 )(uf h . 

In this case, only ·2( )uf h  is a consistent estimator when 0 )( 0p y = . When 

0 )( 0p y = , on the empirical support an inconsistent estimator of ·1)(uf h  is shown to 

have the following limiting distribution:  
 

· + *®1
0

1
) (( )

d

uf h W k
c

 for 0 2 0( ) )1 (k c p f y* = - , (6) 

 
where ( )W k+ *  is a positive Poisson distribution with a parameter k* 3. Slutsky’s 
theorem together with these results imply  

 

____________________ 
3 That is, ( )W k+ *  is the conditional Poisson distribution )(W k*  with mean *k  given that 

)(W k*  is positive. 
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· · + * *

*

- -
®1 1 2

0

( ) ( )) )
ˆ

( (dnh f h f h W k k

kV
  (7) 

 
under 0H . It can be also shown that under 1 0: 0)(H p y > , the statistic in the left-
hand side in Equation (7) tends to diverge to infinity with probability 1. 

Despite these limiting properties, the statistic in the left-hand side in Equation (7) 
cannot be directly used as a test statistic since its limiting distribution under 0H  is 
not pivotal. To deal with this issue, we modify the statistic Equation (7) to propose 
another version of the PMP test statistic. Define 

 

·
· ·

1 1 2
2 0

,0

( ( ) ( ))
( ) )

ˆ
( u u

S u

u

nh f h f h
T I f h d

V

-
= > ´ , 

 
where 0d  is a finite positive constant and ( )I ×  is the indicator function. Also 
define ta  as  

 

[ )0 0 ,
sup ( )

s c d
t t sa a

¥Î
= , 

 
where ( )t sa , 0s > , is the (1 )a- -th quantile of ( ( ) ) /W s s s+ - . Theorem 2 
states that the test rejecting 0 0: 0)(H p y =  against 1 0: 0)(H p y >  when ST ta>  
has an asymptotic size at most a  and it is asymptotically consistent.  

 
Theorem 2. Suppose that Assumption 1 is satisfied. Also assume that 1 0 /h c n=  for a 
positive constant 0c  and 2h  satisfies Assumption 3. Then  

 

0lim Pr ( )( | 0)Sn
T t p ya a

®¥
> = £   (8) 

 
and  

 

0lim Pr( | ( 0) ) 1Sn
T t p ya®¥

>> ® . (9) 

 
To implement this test, we need a constant 0d . To understand the roles of 0d  

and the indicator function in ST , set 0d  to be 0. Then the test statistic ST  is 
reduced to the statistic in Equation (6). Let 

k
q *  be the probability that ( )W k+ *  is 

1. That is, ( )Pr ( 1)
k

q W k*
+ *= = . The (1 )a- -th quantile of ( )W k+ *  is 1 for any 

1
k

qa *³ - . As a result, we have  
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)
1

(
k

t k
k

a

*
*

*

-
=  for 1

k
qa *³ - ,  

 
which increases to infinity as 0k* ® . Therefore, p )su (

k
t t ka a* +

*
Î

= = ¥
R

 for all 
(0,1)a Î  when 0 0d = . To resolve this problem, we take the supremum of ( )t ka

*  
over the set of k*  greater than 0 0c d . This modification generates a finite critical 
value, which guarantees the required rejection probability (8) for any 0 0k c d* ³ , 
that is, 2 0 0)( / (1 )f y d p³ -  under 0 0: 0)(H p y = . For 0 0k c d* < , that is, 2 0( )f y <

0 / (1 )d p- , the null hypothesis is rejected with probability approaching 0, and thus 
(8) is also satisfied. 

 
 

IV. Local Power of the PMP Test 
 

4.1. PMP Test with 2 1 1a a£ <  

  
For the PMP test LT , we consider a local alternative hypothesis 1, 0 ): (H p yd =

d 1/ /n h , 0d > . The probability of 0y  in this asymptotics converges to 0 at a 

rate of 10.5 /2n a- - . It follows from Equations (2) and (3) that for 1,2j = ,  
 

· ( )
2

2 2 2
0 2 0[ ( (1 ) (  ) ( ) (] ) ( ) )

2
j

j j

h
E f h p f y f y s K s ds o h

æ ö
= - + +ç ÷ç ÷

è ø
ò   (10) 

· æ ö
= - + ç ÷ç ÷

è ø
ò 2

2 0)] )
1 1

[ ( (1 ) ( ( )j
j j

V f h p f y K s ds o
nh nh

  (11) 

 
under 1,H d . As a result, we have  

 

· ® - 2 0( (1 )) )(
p

jf h p f y , 1,2j = . (12) 

 
The PMP test statistic LT  can be written as 

 

,1 , ,L L L nT T d= +D  
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The first term ,1LT  converges to a standard normal distribution under 1,H d . 
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Using Equations (2), (3), and (12), the second term is shown to converge to a 
constant ,L dD  given by  

 

,
2 0

(0)
(1 )

(1 )) (L
c

K
c

k p f yd dD = -
-

. 

 
Recall that the PMP test with nominal size a  rejects 1 0: 0)(H p y >  when 

LT za> , 0 1a< <  where za  is the (1 )a- -th quantile of a standard normal 
distribution. Then the power of LT  against 1,H d  is  

 

,1 , ,)P ( ( )r PrL L L nT z T za a d> = > -D   

,(1 () ) Lz za a df» D-F + , (13) 

 
where ( )F ×  and ( )f ×  are the distribution function and density function of a 
standard normal distribution, respectively. The second line is obtained by using the 
above-mentioned results: 1,LZ  converges to a standard normal distribution and 

, , ,

p

L n Ld dD ®D  under 1,H d . 
This result shows that the PMP test LT  has nontrivial power against the 

sequences of 0( )p y  shrinking to 0 at a rate of 10.5 /2n a- - . Recognize that the 
nontrivial power crucially hinges on the limiting behavior of , ,L ndD . If , ,L ndD  
approaches 0 in the limit so that 0( )p y  converges to 0 at a rate faster than 10.5 /2n a- - , 
the limiting distribution of LT  under 1H  is the same as the one under 0H . 
Thus, the asymptotic power is simply a . 

 
4.2. PMP Test with 2 1 1a a< =  

 
Here we consider a local alternative hypothesis d d=1, 0: ( /)H p y n , 0d > . 

Recall that we consider a local alternative hypothesis a
d d += 0.5 /2

1, 0: ( /)H p y n . 
Since 1a  for ST  is 1, this specific alternative hypothesis corresponds to the local 
alternative hypothesis for LT . 

Similar with Equation (6), under 1,H d  
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on the empirical support. This result together with Equation (12) implies  
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As long as 0d  is sufficiently small such that 2 0 0(1 ) ( )p f y d- > , Equation (12) 
provides that ·2 0( )uf h d>  with probability approaching 1. The power of ST  
against the local alternative 1,H d  is  

 

Pr( Pr() ( ) )sT t W k k k ta a
+ * * **> » > +  

( )
Pr

W k k k k k
t

kk k
a

+ * **

**

** *

*

* *

** *

æ ö- -ç ÷= > -
ç ÷
è ø

. (15) 

 
Unlike the local power of ST  stated in Equation (13), the approximate rejection 

probability in Equation (15) is not simply obtained since the critical value ta  is 
selected to guarantee the asymptotic conservativeness of the PMP test ST  in the 
presence of a nuisance parameter *k . Therefore, instead of deriving a more specific 
expression of the power in Equation (15), let us compare it with the rejection 
probability under 0H . From the definitions of k*  and k** , k k** *- = 0d > . As 
a result,  

 

k k k
t t

k k
a a

* ** *

** **

-
- < . 

 
Thus, we have for any d  and k* , 

 

1, 0| )Pr( , Pr( , )|s sT t H k T t H ka d a
* *> > > , 

 
which holds with probability approaching 1. With the last inequality, it can be 
asserted that the PMP test ST  has nontrivail power against the local alternatives 
with 0( )p y  shrinking to 0 at a rate of 1n-  and that the power increases with d . 

 
 

V. Simulation 
 
In this section, we numerically evaluate the performance of the PMP tests. A 

sample is randomly drawn from a model (1) where 1( )F y  is a discrete uniform 
distribution function with { 1,0,1}D = -  and 2( )F y  is the standard normal 
distribution function. We independently conduct 1000 replications for various 
combinations of sample size n  with : 0, 0.05, 0.1, 0.2,p p =  and 500,1000,n =
2000 . 
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[Table 1] Actual rejection probabilities of LT  and ST  ( p =0.2,0.1,0.05,0) 
 

   LT     ST    

0y  0 0 1 1 0.5 0.5 0 0 1 1 0.5 0.5 

a † 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 
     p =0.2       

n=500 0.997 1.000 1.000 1.000 0.005 0.053 1.000 1.000 1.000 1.000 0.003 0.027 
n=1000 1.000 1.000 1.000 1.000 0.009 0.041 1.000 1.000 1.000 1.000 0.002 0.024 
n=2000 1.000 1.000 1.000 1.000 0.009 0.040 1.000 1.000 1.000 1.000 0.000 0.015 

     p =0.1       

n=500 0.761 0.925 0.886 0.965 0.008 0.054 1.000 1.000 1.000 1.000 0.000 0.005 
n=1000 0.990 1.000 0.997 1.000 0.007 0.042 1.000 1.000 1.000 1.000 0.000 0.001 
n=2000 1.000 1.000 1.000 1.000 0.007 0.045 1.000 1.000 1.000 1.000 0.003 0.007 

     p =0.05       

n=500 0.242 0.515 0.367 0.653 0.006 0.052 0.980 1.000 0.990 1.000 0.000 0.005 
n=1000 0.610 0.827 0.778 0.910 0.008 0.045 1.000 1.000 1.000 1.000 0.002 0.010 
n=2000 0.962 0.993 0.987 0.999 0.008 0.054 1.000 1.000 1.000 1.000 0.001 0.005 

     p =0       
n=500 0.009 0.048 0.009 0.055 0.008 0.053 0.000 0.005 0.000 0.010 0.000 0.005 

n=1000 0.009 0.040 0.010 0.048 0.007 0.041 0.002 0.008 0.001 0.021 0.001 0.009 
n=2000 0.008 0.051 0.005 0.046 0.008 0.048 0.001 0.008 0.001 0.023 0.000 0.004 

Note: Numbers in each cell indicate the actual rejection probabilities for the PMP tests LT  and 

ST  in 1000 replications. A uniform kernel ( ) = £(| | 1 / 2)K u I u , 0.4
1 0.5h n-= , and 

0.4
2h n-=  are used for LT . 1

1h n-= , 0.4
2h n-= , and 0 0.3d =  are used for ST .  

† a  is a nominal significance level. 

 
Table 1 displays the actual rejection probabilities of two versions of PMP tests at 

mass points 0 and 1, and a non-mass point 0.5.4 For LT , we choose 0.4
1 0.5h n-=  

and 0.4
2h n-= . For ST , we set 1 1 /h n= , 0.2

2h n-= , and 0 0.3d = .5 As expected, 
the rejection probabilities of LT  and ST  at mass points turn out to increase with 
p . In both PMP tests, when p  is sufficiently large ( 0.2p = ), the rejection 

probabilities at mass points are close to 1 for all n . However, two PMP tests have 
noticeably different rejection probabilities at mass points when p  is small 
( 0.05p = , 0.1). The powers of LT  display an increasing pattern with p  while 
the rejection probabilities of ST  still remain close to 1. The rejection probabilities 
at mass points also increase with the sample size, and thus have values close to 1 for 
all positive values of p  when the sample size is sufficiently large ( 2000n = ). In all, 
both PMP tests show similar power properties although ST  has greater power than 

LT . In contrast to the power properties, different features are observed in the 
empirical sizes of the two PMP tests. The empirical rejection probabilities of LT  at 

____________________ 
4 Because of the symmetry of the distribution, the rejection probabilities show similar patterns at 

1-  and 1. Thus, we do not report the results for another mass point 1- . 
5 The critical values ta  at the 1% and 5% significance levels are 4.93 and 3.13, respectively. 
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non-mass points (either 0p =  or 0 0.5y =  with 0p > ) turn out to be close to 
nominal sizes while those of ST  remain much smaller than the nominal sizes for 
all sample sizes n . 

 
[Table 2] Actual RP’s of LT  and ST  in the neighborhood of a mass point 0 (a =0.05)  
 

Panel I. Rejection Probabilities of LT  

 0y =0.0001 0y =0.001 0y =0.01 0y =0.1 1h  2h  

   p =0.2    
n=500 1.000 1.000 0.999 0.052 0.042 0.083 

n=1000 1.000 1.000 1.000 0.045 0.032 0.063 
n=2000 1.000 1.000 1.000 0.046 0.024 0.048 

   p =0.1    
n=500 0.923 0.924 0.926 0.053 0.042 0.083 

n=1000 1.000 0.999 1.000 0.041 0.032 0.063 
n=2000 1.000 1.000 1.000 0.050 0.024 0.048 

   p =0.05    
n=500 0.518 0.520 0.500 0.053 0.042 0.083 

n=1000 0.828 0.836 0.838 0.044 0.032 0.063 
n=2000 0.994 0.992 0.988 0.045 0.024 0.048 

Panel II. Rejection Probabilities of ST  

 0y =0.0001 0y = 0.001 0y =0.01 0y =0.1 1h  2h  

   p =0.2    
n=500 1.000 1.000 0.010 0.005 0.002 0.289 

n=1000 1.000 0.008 0.009 0.005 0.001 0.251 
n=2000 1.000 0.000 0.000 0.000 0.0005 0.219 

   p =0.1    
n=500 1.000 1.000 0.010 0.005 0.002 0.289 

n=1000 1.000 0.000 0.000 0.000 0.001 0.251 
n=2000 1.000 0.006 0.007 0.006 0.0005 0.219 

   p =0.05    
n=500 1.000 1.000 0.010 0.005 0.002 0.289 

n=1000 1.000 0.008 0.009 0.005 0.001 0.251 
n=2000 1.000 0.006 0.012 0.007 0.0005 0.219 

Note: Numbers in each cell indicate the actual rejection probabilities for both PMP tests in 1000 
replications. For LT , a uniform kernel, -= 0.4

1 0.5h n , and -= 0.4
2h n  are employed. For 

ST , -= 1
1h n , -= 0.4

2h n , and =0 0.3d  are employed. 

 
Table 2 presents the size properties of LT  and ST  at non-mass points 

neighboring to a mass point 0. Particularly, we consider four non-mass points 
0.0001, 0.001, 0.01 , and 0.1 . The three different non-zero values are used for p
( 0.05, 0.1, 0.2p = ). When a non-mass point is sufficiently away from 0, ST  has at 
least as small false rejection rates as LT  for all combinations of p  and n  in the 
experiment. Such better performance of ST  is most striking at a point 0.01. At this 
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point ST  delivers relatively a small number of false detections while LT  generates 
false detection with a rate close to 1. This finding is explained by the magnitudes of 
the selected bandwidths relative to the distance from a mass point. As a non-mass 
point becomes closer to 0, both tests ST  and LT  make more false rejections, and 
thus suffer from large size distortion. At first glance, a larger sample size seems to 
aggravate the size distortion problem as shown in the results for LT  at 0.0001 . 
However, this observation misleads the true effect of the sample size n . In fact, the 
size distortion disappears eventually as the sample size n  increases so that the 
bandwidths 1h  and 2h  become sufficiently smaller than the distance between a 

 
[Figure 1] Illustration of power and size at 0 =1( =0.05)y a  
 

 
0 

 
 

Note: The top panel displays the rejection probability of 0 0: 0)(H p y =  when 0.05p =  and 

0 1y = . The bottom panel displays the rejection probability of 0 0: 0)(H p y =  when 
0p =  and 0 1y = . 
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non-mass point and 0.6 This fact explains the better performance of ST  at points 
0.001, 0.01 and 0.1. 

Recall that the critical value ta  is dependent on the choice of 0d . In order to 
have a better understanding of the effect of 0d , we present the rejection 
probabilities of ST  depending on the change of 0d  in Figure 1. Specifically, the 
rejection probabilities of ST  at a point 0 1y =  are investigated for two cases: 

0.05p =  and 0p = . Bandwidths 1h  and 2h  are selected as described in Table 1. 
The upper and lower panels of Figure 1 summarize the profiles of rejection 
probabilities when 0.05p =  and 0p = , respectively. Recognize that 0 1y =  is a 
mass (non-mass, resp.) point when 0p > ( 0p = , resp.) so that the upper (lower, 
resp.) panel presents the power (size, resp.) properties. Results in the upper panel 
hint that the power stays close to 1, and thus is not quite sensitive to the choice of 

0d  except when sample size is small ( 500n = ). In contrast, the size in the lower 
panel turns out to be sensitive to the choice of 0d . However, the size does not show 
much variation when 0d  is sufficiently large. For example, all size curves remain 
flat for all 0 0.3d > . These findings imply that size and power properties of the 
PMP test ST  displayed in Tables 1 and 2 are not much varied even when different 
values of 0d  are used. 

 
[Table 3] Actual rejection probabilities of LT  and ST  under local alternative 
 

 LT  ST  

0y  0 0 1 1 0 0 1 1 
a † 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 

 0 1)( /p y h n=  0 )( 1 /p y n=  

n=500 0.166 0.392 0.236 0.522 0.039 0.152 0.120 0.326 
n=1000 0.173 0.410 0.227 0.517 0.061 0.180 0.121 0.340 
n=2000 0.184 0.412 0.246 0.516 0.050 0.169 0.142 0.363 

Note: Numbers in each cell indicate the actual rejection probabilities for the PMP test LT  and 

ST  in 1000 replications. A uniform kernel ( ) (| | 1 / 2)K u I u= £ , 0.4
1 0.5h n-= , and 

0.4
2h n-=  are used for LT . 1

1h n-= , 0.4
2h n-= , 0 0.3d = , and a uniform kernel are used 

for ST .  
† a  is a nominal significance level. 

 
 
 
 

____________________ 
6 The size problem at a non-mass point  in the neighborhood of a mass point y*  results from 

the short distance between 0y  and y* . Recall that in our example, a mass point y*  affects the 
uniform kernel density estimate at 0y  when 0 |2|h y y*> - . A fall in h  associated with an increase 
in sample size n eventually makes the distance between y*  and 0y  greater than 2h  so that the 
effect of the mass point y*  disappears and the size problem improves.  
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[Table 4] Actual rejection probabilities of the modified HCP test 
 

 p =0.2 p =0.1 p =0.05 p =0 p =0.2 p =0.1 p =0.05 p =0 

 0y =0 ( 0.05a = ) 

 rth h=  0.4h n-=  
n=500 0.768 0.454 0.241 0.021 0.758 0.441 0.229 0.019 

n=1000 0.923 0.624 0.346 0.030 0.920 0.614 0.326 0.033 
n=2000 0.981 0.769 0.473 0.036 0.981 0.759 0.464 0.038 

 0y =1 ( 0.05a = ) 

 rth h=  0.4h n-=  
n=500 0.905 0.595 0.354 0.033 0.901 0.582 0.343 0.028 

n=1000 0.983 0.767 0.467 0.210 0.978 0.761 0.453 0.020 
n=2000 1.000 0.910 0.637 0.031 1.000 0.905 0.623 0.027 

Note: Numbers in each cell indicate the actual rejection probabilities for both HCP tests in 1000 
replications. For µ(0)uf , a uniform kernel and two bandwidths ( ¶ 0.

ˆ
21.06rt uh ns -=  and 

0.4h n-= ) are used. 

 
We conduct numerical experiments to see the local power properties of the PMP 

tests discussed in section IV. Table 3 shows the empirical rejection probabilities of 
PMP tests against a sequence of local alternative hypotheses. We maintain the same 
simulation setup except for 0( )p y . 0( )p y  is assumed to converge to 0 at a rate of 

1 /h n .7 As predicted, the simulation results suggest that both PMP tests have 
nontrivial power against the given local alternative hypotheses. Moreover, the 
rejection probabilities are reported to remain stable despite the increase in the 
sample size n , which is also expected from the result in Section IV. 

Han, Cho and Phillips (2011), hereafter HCP (2011), proposed a test for 
detecting infinite density at the median.8 Considering the similarity of the 
hypotheses in HCP (2011) and the PMP tests, we also conduct numerical 
simulations to compare the performance. Some modifications are made in 
implementing the HCP test. First, there is no specific quantile regression that we 
should explicitly consider. Thus, we independently generate one variable X  and 
estimate a quantile regression showing the relationship between the variable of 
interest Y  and a newly generated variable X . By design, the true slope parameter 
is 0. This knowledge simplifies the construction of the HCP test statistic by 
enabling us not to rely on a sample-splitting technique used in HCP (2011). Second, 
the location that we want to test the presence of probability masses is not necessarily 
the median, while the original version of the HCP test investigates the infinite 
density at the median. So we generalize the HCP test for any q -th quantile 

____________________ 
7 Specifically, we set 0.7

0 2( )p y n-=  for LT  and 1
0( )p y n-=  for ST  by using the bandwidths 

as before. 
8 We are grateful to an anonymous referee who suggested this idea. 
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regression, 0 1q< <  when using an estimate of q . For details of the simulation, 
see Appendix B. Table 4 shows the performance of the HCP test at 0 0y =  and 1 
with different combinations of p  and n . We used the rule-of-thumb bandwidth, 

0.21.06 ˆ
rth ns -= , where ŝ  is the sample standard deviation. We also use another 

bandwidth 0.4h n-=  to the purpose of comparing the simulation results with the 
results in Table 1.9 The simulation results indicate that the HCP test has desirable 
size and power properties in the sense that empirical power increases to 1 with 
sample size and empirical size does not differ much from its nominal size. 
Comparing these results with the results in Table 1, we find that PMP test performs 
slightly better than HCP test in the current data generating process. 

 
 

VI. Empirical application: Korean Wage Earners’ 
Bunching Behavior 

  
In this section we consider two expenditure distributions of Korean wage earners. 

For the purpose of income tax filing, Korean wage earners can claim tax deductions 
on certain expenditures. Selected but not complete list of eligible expenditures are 
medical expenses, educational expenses, private insurance expenses, charitable gifts, 
and credit card expenditures. 

The amount of tax deduction D  for each category is typically stipulated as 
follows.  

 
min( max( ,0), ( ))D k E E k E E= ´ - ´ - , 

 
where E  is the amount of money spent on an eligible category, k  is a deduction 
rate between 0 and 1, and E  and E  represent the minimum and maximum of 
the phase-in range, respectively. According to this rule, tax deduction on each 
category remains at 0 for E E< , linearly increases for E , E E E£ < , and 
remains at ( )k E E-  for E E³ . 

Tax deduction lowers income taxes, and thus it is equivalent to subsidizing 
eligible expenses. As a result, a wage earner is faced with an effective cost of 1-
(marginal tax rate tax deduction for an extra unit of expenditure)´  when spending 
an additional unit of money on an eligible item. In this regard, a wage earner 
experiences an abrupt change in the effective cost around the endpoints in the 
phase-in area, E  and E . Therefore, excessive numbers of observations are 
expected to be found at E  and E  as in Saez (2010) and Chetty et al. (2011).10 

____________________ 
9 These two bandwidths satisfy the condition for the bandwidth in HCP (2011): 0h®  and 
nh®¥  as n®¥ . 
10 Some taxpayers might fail for recognizing the exact tax deduction schedule since it is determined 
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[Table 5] Summary statistics of the credit card expenditure and taxpayers’ demographic 
variables: 2007-2015 

 

Year mean standard deviation min max 
credit card expenditure 1,501.3 1,190.3 0.0 15,993.0 

age 39.8 9.5 18 78 
marriage dummy 0.80 0.40 0 1 

male dummy 0.72 0.45 0 1 
Note: These summary statistics are obtained from a sample of 12,589 labor income taxpayers in 

the NaSTaB survey reporting credit card expenditure between 2007 and 2015. The unit of 
credit card expenditure is 10,000 KRW. The marriage dummy is one if the taxpayer is 
married, and zero otherwise. The male dummy is one if the taxpayer is male, and zero 
otherwise. 

 
[Table 6] Summary statistics of private insurance and taxpayers’ demographic variables: 

2007-2015 
 

Year mean standard deviation min max 
private insurance 227.5 190.5 2.0 6,535.0 

age 41.1 9.8 18 77 
marriage dummy 0.80 0.40 0 1 

male dummy 0.70 0.46 0 1 
Note: These summary statistics are computed from a sample of 20,831 labor income taxpayers in 

the NaSTaB survey reporting the expenditure on private insurance between 2007 and 2015. 
The marriage dummy is one if the taxpayer is married, and zero otherwise. The male 
dummy is one if the taxpayer is male, and zero otherwise. The unit of private insurance is 
10,000 KRW. 

 
Motivated by this line of idea, we investigate the presence of mass points in two 

tax deductible expenditure distributions of Korean wage earners: credit card 
expenditures 11  and private insurance expenses. To this purpose, we use the 
National Survey of Tax and Benefit (NaSTaB) from survey years 2008-2016 for our 
analysis.12 We restrict the samples to individuals who report positive wage incomes 

____________________ 
by their annual incomes of a tax year. If a majority of taxpayers commit an error, little bunching is 
observed at E  and E . We expect that such an error is not common for wage earners since there are 
little unexpected variation in wage incomes, and thus they can guess annual incomes with high 
precision.  

11 In 1999, Korean government introduced credit card expenditure tax deduction with an aim to 
better keep track of business incomes, and thus decrease the size of the underground economy. A wage 
earner can claim a fraction of his/her expenditures paid through credit card system, debit card system, 
and cash receipt system. Overseas expenditure, educational expenses, insurance expenses, utility 
charges, rents, charitable donation, and some other categories of expenses are excluded in measuring 
credit card expenditures. Such an incentive system makes an individual to use credit/debit cards or 
request a cash receipt, which generates the transaction record accessible to the National Tax Services 
(NTS).  

12 The NaSTaB is a panel survey of Korean households, which aims to find the distributions of 
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and the expenditure for a tax deductible item. Individuals with business incomes are 
dropped since they are treated differently in tax deductions. All remaining data are 
pooled. As a result, we construct two samples. The first sample consists of 12,589 
wage earners reporting positive wages and credit card expenses during this period. 
The summary statistics of this sample is presented in Table 5. The average age in 
this sample is 39.8, and the shares of the married and males are 80% and 72%, 
respectively. On average, an individual in this sample reports approximately 15 
million KRW as credit card expenditure. The second sample includes 20,831 wage 
earners reporting positive wages and expenditures for the private insurance against 
disease, accident and death between 2007-2015. As seen in Table 6, the 
demographic composition of this sample is similar to that of the first sample. The 
average age is 41.1, and the shares of married individuals and males are 80% and 
70%, respectively. The average expenditure for private insurance is reported to be 
approximately 2.3 million KRW. 

 
[Table 7] Tax deduction schedule for credit card expenditure: Assessment year 2007-2015 

(unit: 10,000 KRW) 
 

Year lower end ( E ) upper end ( E ) deduction rate ( k ) 

2007-2009 0.2 Y  +min{0.2 2500, 1.2 }Y Y  0.2 

2010-2012 0.25 Y  +min{0.25 1500, 1.25 }Y Y  0.2 

2013-2015 0.25 Y  +min{0.25 2000, 19 / 12 }Y Y  0.15 

Note: The Korean tax law has required the upper end E  to depend on the labor earnings of an 
employee Y . The upper end E  is computed by using the tax schedule and labor 
earnings. A higher deduction rate has been applied to the amount of expenditures paid by 
a debit card since 2010. For those years, we assume that all expenditures are paid by credit 
cards in computing the upper end E . 

 
Table 7 presents the tax deduction schedule for credit card expenditures.13 

Between 2007 and 2009, the lower end ( E ) was set at the 20% of labor income and 
the upper end of the upper end ( E ) was set at the minimum of (i) 15 million KRW 
plus 20% of labor income and (ii) 120% of labor income. The deduction rate k  
was 20%. In 2010, the lower and upper bound increased to 25% of labor income and 
the minimum of (i) 125% of labor income and (ii) 15 million KRW plus 25% of 

____________________ 
taxes and benefits across households and their members. To serve this goal, the NaSTaB collects 
information on last year’s tax burdens and benefits of each household and its members. Therefore, our 
sample of the NaSTaB 2008-2016 includes the expenditures for the period between 2007 and 2015.  

13 Korean tax law stipulates the maximum tax deduction for the credit card expenditure instead of 
the upper end E  of the phase-in area. For example, in 2008 the maximum tax deduction for the 
credit card expenditure is stated as a minimum of 5 million KRW and the 20% of labor income. Using 
the relationship between the maximum tax deduction and the upper end E , we can compute E  
with given deduction rate k  and lower end E .  
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labor income. In 2013, the deduction rate was lowered to 15%. The upper bound 
was also lowered to the minimum of (i) 158.3% of labor income and (ii) 20 million 
KRW plus 25% of labor income. 

Figure 2 presents the distribution of credit card expenditure of 12,589 wage 
earners in the sample. The horizontal axis indicates the difference between the 
actual expenditure and the lower bound in the phase-in area, that is, E E- . We 
divide the empirical support into bins with a size of 1 million KRW and plot the 
frequency in each bin at the mid point. As expected, the highest frequency is 
observed at 0. This finding implies the possibility that individuals’ optimizing 
behavior generates an excessive observation at the lower bound E . To confirm the 
presence of probability masses, we conduct the PMP tests with 0.4

1 0. ˆ5h n s-=  and 
0.4

2
ˆh n s-=  for LT , and 1 / ˆ1h ns= , 0.2

2
ˆh n s-= , and 0 0.3d =  for ST , where 

ŝ  is the sample standard deviation14. Table 9 presents the PMP test statistics. The  
 

[Figure 2] The distribution of credit card expenditure from the lower end E  
 

 
 

Note: This graph shows the credit card expenditure distribution of 12,589 wage earners in the 
NaSTaB survey reporting positive wage and credit card expenditure between 2007 and 
2015. The horizontal axis indicates the difference between the expenditure and the lower 
end, that is, E E- . The differences are divided into bins with size 1 million KRW. The 
frequency in each bin is plotted at the mid point. 

____________________ 
14 The same procedure is used in implementing the PMP tests for other bunching points in this 

section. 
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[Figure 3] The distribution of credit card expenditure from the upper end E  
 

 
 

Note: This graph shows the credit card expenditure distribution of 12,589 wage earners in the 
NaSTaB survey reporting positive wage and credit card expenditure between 2007 and 
2015. The horizontal axis indicates the difference between the expenditure and the upper 
end. The differences are divided into bins with size 1 million KRW. The frequency in each 
bin is plotted at the mid point. 

 
test statistics at E  turn out to be 6.35LT =  and 178.70ST = . Hence, the 
hypothesis of no point masses at E  is rejected at the 1% significance level. We also 
conduct the PMP tests for the hypothesis of no point masses at the upper end E . 
As shown in Figure 3, the bunching at the upper end E  is not as much striking as 
the one at the lower end E . Despite the fact, the PMP tests reject the null 
hypothesis of no point masses at E  at the 1% significance level, and thus imply 
that there is a bunching of positive probability masses at E . 

As another example, we consider the distribution of wage earners’ expenditures 
for the private insurance against disease, accident and death. Table 8 presents the 
tax deduction schedule for private insurance expenditures. During the entire years 
of analysis, the lower and upper end remained at 0 and 1 million KRW, respectively. 
Figure 4 displays the distribution of the private insurance expenditures of 20,831 
wage earners in the sample between 2007 and 2015. In this example we investigate 
only the upper end E  since the lower end E  is located at the boundary of the 
support of the private insurance expenditure distribution. A hike is observed at E .  
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[Table 8] Tax deduction schedule for private expenditure: Assessment year 2007-2015 
 

Year lower end ( E ) upper end ( E ) deduction rate ( k ) 

2007 - 2015 0 1 mil. KRW 1 

 
[Figure 4] The distribution of private insurance expenditure from the upper end E  
 

 
 

Note: This graph shows the private insurance expenditure distribution of 20,831 wage earners in 
the NaSTaB survey reporting positive wage and the expenditure on private insurance 
between 2007 and 2015. The horizontal axis indicates the difference between the 
expenditure and the upper end. The differences are divided into bins with size 100 
thousand KRW. The frequency in each bin is plotted at the mid point. 

 
The PMP test results at E  are presented in the lower panel of Table 9. The PMP 
test statistics are 20.26LT =  and 654.07ST = . Thus, both PMP tests reject the 
null hypothesis of no probability masses at E  at the 1% significance level, which 
leads to the conclusion that there is a bunching of observations at the upper end E . 
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[Table 9] The PMP tests of Korean wage earners’ expenditure distributions 
 

Panel I. Credit card expenditure 
 LT  ST  

0H : No point masses at E  6.35 178.70 

0H : No point masses at E  6.76 265.50 

Panel II. Private Insurance  expenditure 
 LT  ST  

0H : No point masses at E  20.26 654.07 

Note: Numbers in each cell present the PMP test statistics of the null hypothesis of no probability 
mass at a specified point. ŝ  is the sample standard deviation of the normalized gap. 
Bandwidths ( 0.4

1 0. ˆ5h n s-=  and 0.4
2

ˆh n s-= ) are used for LT . Bandwiths ( 1
1

ˆh n s-= , 
0.4

2
ˆh n s-= ) and 0 0.3d =  are chosen for ST . A uniform kernel are commonly used for 

both PMP tests. The critical values for ST  at the 1% and 5% significance levels are 4.93 
and 3.13, respectively. All PMP tests reject the null hypothesis at the 1% significance level. 

 
 

VII. Concluding Remarks 
 
In this study, we proposed two PMP test statistics to detect the presence of mass 

points among non-mass points. We derived the limiting distributions of the 
proposed test statistics under the null and alternative hypothesis by exploiting the 
asymptotic difference between two kernel density estimators using different 
bandwidths. Specifically, the proposed PMP test statistic is shown to converge to 
either the standard normal distribution or a linear transformation of a positive 
Poisson distribution at a non-mass point depending on bandwidths choice while it 
diverges to the infinity at a mass point. The consistency and size properties of the 
PMP tests are immediate from the limiting distributions. Numerical experiments 
are conducted to confirm the theoretical properties of the PMP tests. 

We apply the PMP tests to see if there is a bunching behavior among taxpayers 
facing kinked effective tax rate due to the deduction schedule. In general, it is 
expected that PMP tests can be useful as a pretest when researchers are doing some 
kernel-based nonparametric analyses. For example, they can be used to test the 
discontinuity of a running variable at a threshold when doing regression 
discontinuity (RD) design analysis. Depending on the PMP test result at the 
threshold, the researcher can make decision about whether the observations are 
appropriate for RD analysis. In this sense, this study complements the recent RD-
related nonparametric estimation research such as McCrary (2008) and Otsu et al. 
(2013). 

An open question for future research is to detect all mass points in the entire 
support. When mass points are assumed to result from a certain stochastic 
transformation from a true continuous variable, a researcher might want to have the 
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set of all mass points to recover the underlying distribution of a true variable. The 
consistent detection of all existing mass points requires a multiple hypotheses 
testing procedure which detects all mass points as well as does not falsely detect 
non-mass points with probability approaching 1. Such a procedure can be 
developed by applying the idea of a complete consistent test in Andrews (1986) and 
a multiple hypotheses procedure, for example, the Holm procedure in Holm (1979) 
to our PMP tests.  
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Appendix 
 

A. Proofs 
 

Lemma A1. Under Assumptions 1-3, the mean and variance of ·( )f h  are (2) and (3).  
 

Proof. The mean of ·( )f h  is given by  
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Recognize that  
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Plug (16) and (17) into the previous expression for the mean of ·( )f h  to have  
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where 1)( ( )j jp d pf d=  and the last equality results from the well-known result for 
a kernel density estimator without the presence of mass points. Then, Equation (2) 
immediately follows from the last equation. 

The variance of ·( )f h  can be written as 
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Firstly,  
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Plug (2) and (19) into (18). Then  
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To prove Theorem 1, we investigate the mean and variance of the difference of 

the two kernel density estimators in Lemmas A2 and A3.  
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Lemma A2. Under Assumptions 1-3 with 1 2h ch= , (0,1)cÎ , the mean and variance 
of · ·

1 2( ) ( )f h f h-  are given by  
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Proof. By using Equation (2), we have  
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The variance of · ·

1 2(( ) )f h f h-  is written as  
 

· · · · ··
1 2 1 2 1 2( ( (( ) ( )) ( )) ( )) ( ( )( )2 , )V f h f h V f h V f h Cov f h f h- = + - . 
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where the second equality follows from (2). To evaluate 1 2( )i iE w w , apply the law 
of iterated expectation. Then,  
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because of (16) and (17). The second term is decomposed into two parts.  
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where y*  lies between 0y  and 0 1y h s- . Second, notice that the Lipschitz-
continuity of a kernel ( )K ×  implies 
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for a constant d* . Therefore, we have  
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where the last equality comes from the properties of a kernel ( )K ×  described in 
the definition. Plug these results into (21) to obtain 
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Plugging this equation into (20) provides  
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This result together with (3) imply that  
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Lemma A3. Under Assumptions 1-3 with 1 2h ch= , (0,1)cÎ ,  
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are the conditions of Liapounov’s central limit theorem so that (22) is shown to be 
satisfied. Therefore, let us show that (23) is satisfied. 

We have  
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where the inequality comes from the rc  inequality. Use the the rc  inequality and 
the law of iterated expectation to obtain  
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where the last equality results from Lemma 2.1 in Pagan and Ullah (1999). A 
similar result is obtained for 2

2| |iE w d+ . Thus, the term in the right-hand side in 
(24) is bounded by  
 

d

d

+

+
æ ö
ç ÷ç ÷-è ø

2

3

1 2

1

( )
2

i i

n
nV w w

  

( )d d d d d d d+ - - - - + - - - - - -´ + + - + +ò2 2 2 2 1 1 1
0 1 2 2 0 1 2 1( ) ) ) ) ( )(0) ( (1 ) ( | ( )| (p y K h h p f y K s ds h h o h . (25) 

 
First, consider a case where 0 )( 0p y = . In such a case, (25) is written as  
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which is again bounded by 

 

( )
2

3 2 1 1 2
1 2 2 0

1 2

1
2 (1 ) ( (1)

(
( ) ) | ( )|

)i i

n h h p f y dsK o
n w

s
V w

d

d d d d

+

+ - - - - +
æ ö

+ - +ç ÷ç ÷-è ø
ò  



The Korean Economic Review  Volume 35, Number 1, Winter 2019 238

( )
2

3 2 /2 2
1 2 0

1 1 2

1
2 ( ) (1 ) | ( )|( )

)
) (1

( i i

nh p f y dK s
h w

s o
V w

d

d d d

+

+ - +
æ ö

= - +ç ÷ç ÷-è ø
ò  

( )
2

3 2 /2 2
2 2 0

2 1 2

1
2 ( ) 1 ) ( (1)(

(
) | ( )|

)i i

nh p f y dK s
h w

s o
V w

d

d d d

+

+ - +
æ ö

+ - +ç ÷ç ÷-è ø
ò . 

 
Lemma A2 implies · ·
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Second, consider a case where 0( ) 0p y ¹ . (25) is written as  
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Similar with the previous case, this term is shown to be bounded by  
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Remember that · ·2 2

1 2 1 2) ( ))( (( () 1)j j i inh V f h f h h V w w O- = - =  when 0( 0.)p y ¹  
Therefore, we have  
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when 0 )( 0p y ¹ . So the conditions for Liapounov’s central limit theorem are 
satisfied for the case where 0 )( 0p y >  and applying Liapounov’s central limit 
theorem completes the proof.                                         ■ 
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Proof of Theorem 1. 
 

(The limiting distribution of LT  under 0 0: 0)(H p y = ): 
First, consider the case where 1 2 1a a= < . The asymptotic standard normality of 

LT  immediately follows from Lemmas A2 and A3 since under 0 0: 0)(H p y = ,  
 

· ·1
1 2

0

( ( )) ( (( )))
ˆL L

nh
T T E f h E f h

V
¢¢= + -   

(1)LT o¢¢= + , 

 
where the second equality follows from Lemma A2, and 4

1 2 (1)nh h o=  by 
assumption. 

Second, consider the case where 2 1 1a a< = . According to Pagan and Ullah 
(1999),  

 
· ( )2

1 1 2 0 2 0( ( ) )) )( 0, ( ( )
d

nh f h f y N f y K s ds- ® ò   (26) 

 
under the given conditions. In a similar manner, we have  

 

·
2 2 0

2

) (
1

( ) pf h f y O
nh

æ ö
- = ç ÷ç ÷

è ø
. 

 
Therefore,  

 

· · · ·1
1 1 2 1 1 2 0 2 2 2 0

2

( ) ( )) ( ( ) ( )) ( ( ) ( ))(
h

nh f h f h nh f h f y nh f h f y
h

- = - + -  

·
1 1 2 0) (( ( )) (1)pnh f h f y o= - + , 

 
which is shown to converge to a normal distribution with mean 0 and variance 

2
2 0 )( ( )f y K sò  by (26). Then LT  is shown to converge to a standard normal 

distribution by recognizing that 2( )ck K s ds= ò  when 0c = .  
 

(The limiting property of LT  under 1 0: 0)(H p y > ): 

Recall the facts that · 0( (0)) )( (1)j j ph f h K p y o= + , 1,2j = . These facts imply that 

under 1 0: 0)(H p y > ,  
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1
0

20

)
( )

1
1 ( (0) ( (1))

(0)
L p

c

h
T n K p y o

hk K p y

æ ö
= - +ç ÷

è ø
. (27) 

 
Since 1

2
lim [0,1)h

h c= Î , (27) is stated as  
 

0 )(0) (
(1 ) (1)L p

c

K p y
T n c o

k

æ ö
= - +ç ÷ç ÷

è ø
. 

 
Therefore, LT  diverges as n®¥  when 1 0: 0)(H p y >  holds true.         ■ 

 
Lemma A4. Suppose that Assumption 1 is satisfied. Also assume that 1 0 /h c n=  for a 
positive constant 0c  and 2h  satisfies Assumption 3. Let 0y  be a point in its 
empirical support. Then under 0 0: 0)(H p y = , 

 
· ·

1 1 2

,0

( ) ( )) )( (
   

ˆ

d
u u

S

u

nh f h f h W k k
T

kV

+ * *

*

- -¢ = ®   

 
as .n®¥  Under 1 0: ( 0) ,H p y >  ST¢  diverges to ¥  with probability 1 as 
n®¥ .  

 
Proof. Firstly, consider the asymptotic distribution of ST¢  under 0H . As a first 

step, let us show Equation (6). Let 1 1

0 02 21( )h h
i iW y Y y= - £ £ + . Then  

 

·
11 1 0

1

) ( (( ), )~
n

u i h
i

nh f h W B n P y
=

=å , 

 
where 

1 0 )(hP y  is a probability that iY  is in an interval 0 1 0 1[ / 2, / 2]y h y h- + . It 
follows from the twice continuous differentiability of ( )f ×  that  

 

1

2
0 1 2 0 1( (1 )) ) (( )hP y h p f y O h= - + . 

 
It implies  

 

1

2
0 1 2 0 1(1 )( ) ( ) )(hnP y nh p f y O nh k*= - + ®   (28) 

 
as n®¥ . For a fixed n , the characteristic function of ·

1 1( )unh f h , denoted by 
( )n ty , is given by  
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1 10 0( )) 1 ( ) )( ( it n
n h ht P y P y ey = - + . 

 
From Equation (28) and the definition of e , it follows that  

 
1)(( )

itk e
n t ey

* -® , 

 
which is the characteristic function of a Poisson distribution with mean k* . 
Remember that 0y  is a value in the empirical support so that ·

1 1( )unh f h  has a 
positive value. Therefore, it can be shown that  

 
·

1 1  ( ) ( ) 
d

unh f h W k+ *® . 

 
Under the given assumptions,  

 

·
2 2 0( (1 ) () )

p

uf h p f y® -  and ·
,0 2 2 0

ˆ )( (1 )) (
p

u cV k f h p f y= ® - . 

 
Therefore, under 0 0: 0)(H p y = ,  

 
( )d

S

W k k
T

k

+ * *

*

-¢® . 

 
Now suppose 1 0: 0)(H p y > . Remember that  

 

·
0)   (( )

p

j u jh f h p y®  for 1,2j = . 

 
Rewrite ST¢  as  

 

·

·
·2 1 1 1

2 2
1 2

2 2

)
( )

( )

(u
S u

u

h h f h h
T n h f h

h hh f h

æ ö
ç ÷¢ = -
ç ÷
è ø

. (29) 

 
Then the last result immediately follows.                                ■ 

 
Proof of Theorem 2. 

 
Suppose that 0 )( 0p y = . If 2 0 0( )f y d> , and thus, 0 0k c d* > , it follows from 

Lemma A4 that  
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0 0

( )
lim Pr |( ( 0 Pr | ( 0) ))Sn

W k k
T t p y t p y

k
a a¥

+ *

*®

*æ ö-ç ÷> = = > =
ç ÷
è ø

  

0

( )
( ) )Pr | ( 0

W k k
t k p y

k
a

*+ *
*

*

æ ö-ç ÷£ > =
ç ÷
è ø

  

a£ . 
 

If 2 0 0( )f y d£ ,  
 

·
0 2 0 0lim Pr( | ( 0) lim) ( ) ( )Pr( | 0) 0S un n

T t p y f h d p ya®¥ ®¥
> = £ > = = . 

 
Therefore, (8) is shown. Suppose 0 )( 0p y > . Then it is shown that ·2( )uf h  
diverges to ¥  with probability 1. This fact together with Lemma A4 imply (9). ■ 

                                                                                         
 

B. The Modified HCP Test 
 
HCP (2011) concern the presence of infinite density at the median. They 

developed a test by exploiting the asymptotic behaviors of 1L -estimators in Knight 
(1998). In a least absolute deviation (LAD) estimation of i i iy u¢= +x b , the idea of 
the HCP test relies on the fact that under suitable conditions, a statistic  

 
2

ˆ
ˆ ˆˆ ˆ(4 )(0) ()n uB nf* = ¢Cb - b b - b , 

 
where ˆ̂(0)uf  is a kernel density estimator of the residuals ( ˆ: ( )î i iu y q¢= - x b ) at 0 
and 1

1ˆ
i i

n
in =

- å ¢=C x x . The statistic nB*  converges in distribution to 2( )pc  under 

0H , where p  is the dimension of ix  and diverges to ¥  with probability 1 
under 1H . nB*  cannot be used as a test statistic since the true parameter value b  
is not available in a general situation. HCP (2011) proposed a test statistic, which 
does not require the knowledge of b . Specifically, HCP proposed to use nB  as a 
test statistic, which is defined as  

 

ˆ 1 2 1 2
2 ˆ ˆ4 (0) ( ˆ ˆˆ ˆ( )  )n uB nf= ¢Cb - b b - b , 

 
where 1b̂  and 2b̂  are the LAD estimators of evenly divided subsamples. HCP 
showed that nB  share the same limiting behaviors with nB*  under both the null 
and alternative hypotheses. 

As briefly mentioned, the current testing problem is different from the one in 
HCP (2011). First, our testing problem does not have a specific quantile regression 
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that we should explicitly consider. Let ix  be a random variable independent with 

iy . Then, the slope parameter of a quantile regression (and as well as a LAD 
regression) between iy  and ix  is 0 by assumption. To be more specific, consider 
a quantile regression  

 
b b ¢= + + = +0 1( ) ( ) ( )i i i i iy q q x u q ux b , (30) 

 
where b b ¢= 0 1( ) ( ( ), ( )) ,q q qb  0( )qb  and 1( )qb  are parameters of the        
q -th quantile regression, and iu  is an error term. By the independence between 

iy  and ix , 1( ) 0qb = . Moreover, 0( )qb  is the q -th quantile of iy  if we 
impose an identifying restriction that the q -th quantile of iu  is 0. We know the 
true parameter value of (a part of) ( )qb , which is contrast to the case in HCP 
(2011). As a result, we do not need to use the sample-splitting method in HCP 
(2011). Instead we directly use the statistic nB* . Second, 0y  where we want to test 
the presence of probability masses is not necessarily the median, while the original 
version of the HCP test investigates the infinite density at the median. Let 0y  be 
the 0q -th quantile of y . The alternative hypothesis that y  has infinite density at 

0y  ( 1 0: ( )yH f y = ¥ ) implies the infinite density of u  in a quantile regression (30) 
at 0 ( (0)uf = ¥ ) only when 0q q= .15 As soon as q  is available, we can use 
genearalize the idea of HCP (2011) and the results in Knight (1998) to have nB*  
for q , 0 1q< < :  

 
1

ˆ
1 2 ˆ ˆˆ ˆ((1 ) (0) ( ) ( )) ( ( ) ( ))n uB nq q f q q q q-* - ¢= - - -Cb b b b ,  (31) 

 
which has the same limiting distributions with the median case where 1 / 2q = . In 
practice, we do not know the exact value of q . Therefore, we use an estimate of q , 
q̂ . A technical difficulty in defining q̂  occurs if there are ties at 0y . In such a case, 
multiple values for q  can be matched to 0y . To overcome this problem, we 
define q̂  as follows.16 

 

0 0
1 1

1 1 1 1
( 1 ( )

2
ˆ )

2

n n

i i
i i

q I y y I y y
n n= =

æ ö
= £ + + <ç ÷

è ø
å å . (32) 

 
With q̂  in (32), we obtain q̂ -th quantile regression estimate:  

 

____________________ 
15 From the definition of the quantile, it readily follows that 0 0( )q yb = . 
16 Admittedly, there are other ways in defining q̂ . For example, one can use the empirical cdf as 

q̂ . 
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1

1ˆ( ) argmin (1 )| | 0) | | ( 0)ˆ ˆ ˆ(
n

i i i i
i

q q y I y q y I y
n =

¢ ¢ ¢ ¢= - - - £ + - - >å i i i ib
x b x b x b x bb . (33) 

 
Similar with Corollary 2 in Knight (1998), the solution to (33) can be shown to 
satisfy  

 

( )
t¢=

- ® - +
1 2

2,

ˆ( ( ) ( )) arg min 2 ( )ˆ
d

n u u
a q q u W

u
ub b , (34) 

 
where na  is suitable normalizing factor, 2~ (0, (1 ) )xW N q q s- , and ( )t u  is a 
quadratic term involving 1u  and 2u .17 Knight (1998) showed that under 0H , 
 

( )
2
lt ¢=u u Cu   

 
where (0)ufl = . Since we draw ix  from a distribution with mean 0, this result is 
simplified as follows: 2 2

1 2, 22 ( )( ) xu ult m= +u  where 2 2
2, ( )x i xE xm s= = . By 

following the steps in Knight (1998), we can show that the solution to the 
minimization problem (34) under 0H  is given by  

 
1 1

1 2 2,( ), (0, )xu u Wl m- -= -   

 
and na n= . Thus, the slope parameter estimate of the q̂ -th quantile regression 
is asymptotically normal under 0H :18  

 

b b m - -- ® - 1 2
1 1 2,( ) ( )) (0, (1 ) 0 ))ˆ (ˆ(

d

x un q q N q q f . (35) 

 
The asymptotic property of 1

ˆ ( )q̂b  under 1H  also remains the same despite the 
use of q̂ . We use the limiting distribution in (35) to obtain the following modified 
formula for the HCP test ˆ ( )nB q :  

 
1 1 2 2 2

1
ˆ(1 ) (0) )ˆ ˆ ˆ ˆ(n u xB nq q f q sb- -= - ,   

 

where 2
xs  is the sample variance. Since s®2 2

p

x xs  and 1( ) 0qb = , the modified 

____________________ 
17 The definition of ( )t u  is the same as that used in Knight (1998), which is ( ) plimt =u

1
1 ( )n

nin =
- å Y ¢ iu x , where 0( )  ( ( / a ( ))) 0t

n nt n F s F dsY = ò - .  
18 The intercept estimate remains fixed at 0y , that is, 0 0

ˆ( )ˆ q yb = . This property results from the 
fact that 0y  is the q̂ -th quantile in a sample. 
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HCP test statistic c® 2ˆ (1)
d

nB  under 0H  and ®ˆ 0
p

nB  under 1H  when  

®¥nnh  and 0nh ® . Therefore, the modified HCP test would reject 

0 0: ( )yH f y < ¥  when 2 (ˆ 1)nB ac> , where 2 (1)ac  is the a -th quantile of the chi-

squared distribution with degree freedom of 1.  
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