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8 
I. Introduction 

 
An article (November 26, 2016) in The Economist, entitled “Economists are prone 

to Fads, ...”, analyzed the most frequently used techniques in economics by a 
machine learning technique. The analysis was based on key words in the abstracts 
of NBER working papers, and the most popular methods turned out to be 
difference in differences (DD), followed by regression discontinuity (RD), 
laboratory experiment, dynamic stochastic general equilibrium, randomized control 
trial, and machine-learning/big-data. DD has been at top since 2012 and its 
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popularity has been increasing ever since, unlike some other methods. There are 
various references for DD: see Angrist and Krueger (1999), Heckman et al. (1999), 
Lee (2005), Athey and Imbens (2006), Angrist and Pischke (2009), Lee (2016a), and 
references therein. 

Despite the popularity of DD, Besley and Case (2000) warned of endogeneity 
problems in a policy/treatment, and suggested to explore the policy equation to find 
plausible instruments in the political process determining the policy, such as the 
number of women or minorities in congress who might be keener on family/health-
related policies. Also, Bertrand et al. (2004) illustrated DD inference problems 
involving ‘clustering/grouping’ that observations are related to one another by 
sharing the individual index i  (i.e., belonging to the same individual), the time 
index t , or something else such as age or residential area. A treatment varying only 
at an aggregate level, not at the individual level, raises another inferential problem. 
The policy endogeneity issue is not dealt with in this paper, however, as it is not 
unique to DD. Also, we do not address the DD inference problems to keep this 
paper not too long; interested readers may refer to Lee (2016a), Brewer et al. (2018), 
and references therein, where the main message seems to be “use at least panel 
generalized least squares estimator with a clustered variance estimator to account 
for serial correlations and others”. 

In the rest of this introductory section, first, we present the basics of DD and two 
illustrative examples. Second, our notation to be used throughout this paper is 
introduced. Third, we lay out how the simple ‘before-after’ is generalized/related to 
DD and then to triple differences, hoping to give the reader a “big picture” for this 
paper. 

 
1.1. Basics and Two Examples 

 
In the basic setup of DD, there are two groups based on a time-constant 

treatment-qualification/eligibility dummy iQ : the 1iQ =  group, i.e., ‘treatment 
group (T group)’, and the 0iQ =  ‘control group (C group)’. In DD, the T group 
gets treated at a time point, say t , (and onwards), but the C group never. Bear in 
mind that the T group is not treated before t , despite that it is called a T group. 

A number of variations of the basic DD framework arise. First, the treatment 
timing, say it , can vary across individuals 1, ,i N= K . Second, iQ  can be time-
constant (e.g., gender and race), or time-varying as in 1itQ =  for income/wealth 
below some threshold or the number of children above zero. Third, the C group 
may be always treated instead of always untreated (‘DD in reverse’); e.g., the C 
group is a village already with a bridge (a treatment) across a river, and the T group 
has a bridge constructed later than the C group. Despite these variations, we will 
stick to the basic setup with two periods, t  and iQ  for a while unless otherwise 
mentioned, and address the extensions/generalization later. 
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DD requires at least two waves of observations. Hence DD can be implemented 
with either repeated cross-sections (RCS) or panel data. As well known, panel data 
can deal with various treatment endogeneity issues better than RCS can; also DD 
Identification (ID) can be seen more easily with panel data. However, estimation 
with panel data is more involved, because RCS is basically handled as cross-section 
data with each individual observed only once over time. For RCS, ordinary least 
squares estimator (OLS) or instrumental variable estimator (IVE) can be applied. 
That is, there are pros and cons in using panel data vs. RCS for DD. 

Consider a three-strike law example. The ‘three-strike law’ in California (CA) 
was enacted to lower crime rates: if convicted 3 times, the person is jailed for life; see 
Helland and Tabarrok (2007) for more on three strike laws. The effect may be seen 
by comparing the crime rates of CA, say, 1 year before and after the law, which is a 
before-and-after (BA). In the study period, however, many other things can change. 
For instance, the CA economy may improve to lower the crime rate. One way to 
remove the undesired economy/time effect is finding a control state, say 
Washington (WA) state, that did not have the treatment but experienced the same 
change in the economic/time conditions. The crime rate BA of CA contains both 
the economy and three-strike-law effects, whereas the crime rate BA of WA contains 
only the economy effect. The difference of the two BA’s (i.e., DD) yields the desired 
treatment effect. Since WA is selected for its economic/time conditions being similar 
to those of CA, DD essentially combines BA with matching. 

To give specific numbers, consider another example. Immigration of cheap labor 
(treatment) is blamed for minority unemployment (response/outcome). Miami 
experienced an influx of cheap labor from Cuba through the “boatlift” incidence 
1979-1981. During the period, the Miami unemployment rate has increased by 1.3%. 
Card (1990) explained the boatlift incidence―the change in the U.S. policy 
handling Cuban refugees, Castro releasing criminals and mental patients, ...―and 
used 4 control cities: Atlanta, Houston, LA and Tampa. The four cities are chosen 
because they are thought to share the same time effect with Miami; if not, a 
weighted average of the four cities may make a better control group, which is called 
a ‘synthetic control’. Using the Current Population Survey, one result from Card 
(1990) in Table ‘DD for Immigration Effect on Unemployment’ shows that the 
control states experienced even higher unemployment to result in an insignificant 
unemployment-decreasing effect. 

 
DD for Immigration Effect on Unemployment 

 1979 1981 1981-1979 BA (SE) 
Miami 8.3 9.6 9.6–8.3 = 1.3 (2.5) 

Control Group Average 10.3 12.6 12.6–10.3 = 2.3 (1.2) 
DD Treatment Effect   1.3–2.3 = –1.0 (2.8) 
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1.2. Notation 
 
Introducing notation, consider two periods 2,3t =  with a time-constant 

qualification iQ , where the treatment is applied only to the 1iQ =  group at 3t = . 
There are reasons for using 2,3t = , instead of 1,2t =  or 0,1t = : (i) to avoid 
confusion with 0,1iQ = , (ii) to allow the period-1 response as a regressor in period 
2, (iii) and to consider later the difference between DD over periods 2-3 and DD 
over periods 1-2. 

In most DD cases, the treatment itD  is the interaction of iQ  and 1[ 3]t =  
where 1[ ] 1A =  if A  holds and 0 otherwise: 

 
1[ 3]it iD Q tº = . 

 
There are cases with 1[ 3]it iD Q t¹ = , because one does not necessarily have to be 
treated even if 1[ 3] 1iQ t = = , or may be treated when 1[ 3] 1iQ t = ¹ . Here, 1[iQ t =
3] 1=  is just an eligibility to get treated, and we call this ‘fuzzy DD’. 

Let 1
itY  it be the ‘potential’ treated response of individual i  at time t , and 

0
itY  the potential untreated response. The observed response is 
 

0 1 0
2 2(1 )it it it it it i iY D Y D Y Y Y= - + Þ = , 0 1

3 3 3(1 )i i i i iY Q Y Q Y= - + . 

 
Define 

 

, 1it it i tY Y Y -D º - , 0 0 0
, 1it it i tY Y Y -D º - , 1 1 1

, 1it it i tY Y Y -D º - . 

 
Let the time-constant and time-varying covariates be iC  and itX , 

 
( , )it i itW C X¢ ¢ ¢º  and , 1 , 1( , , )t

i t i i t itW C X X- -¢ ¢ ¢ ¢º . 

 
For simplicity, covariates are often omitted, which can be confusing at times, as 

the omitted covariates may refer to different periods. Also, the subscript i  indexing 
individuals is often omitted as in writing iQ  as Q . Furthermore, both subscripts 
i  and t  are omitted occasionally as in writing itD  and itY  just as D  and Y . 

 
1.3. From BA to DD and to TD 

 
In BA which is the most basic method in causal analysis, the same subjects are 

compared before and after a treatment D ; e.g., BA photos of persons with a plastic 
surgery D . Formally, BA for the 1Q =  group is 
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1 0
3 3 2( | 1) ( | 1) ( | 1)E Y Q E Y Q E Y QD = = = - =   (1.1) 

1 0 0 0
3 3 3 2( | 1) ( | 1) { ( | 1) ( | 1)}E Y Q E Y Q E Y Q E Y Q= = - = + = - =   (1.2) 

 
subtracting and adding 0

3( | 1)E Y Q =  after the first term. 0
3( | 1)E Y Q =  is a 

counter-factual because 0
3Y  is never realized for 1Q = . 

The BA ID condition is that the terms in { }×  are zero: 
 

0 0 0
3 3 2( | 1){ ( | 1) ( | 1)} 0E Y Q E Y Q E Y QD = = = - = =   ( IDBA ) 

 
which makes BA in (1.2) ‘the effect on the treated 1Q =  at the post-treatment period’ 

 
1 0

3 3( | 1)E Y Y Q- = . (1.3) 

 
Now suppose that the treatment takes a long time to manifest itself, during which 

other variables (observed X  and unobserved e ) can change. Then the change in 
Y  may be due to changes in X  or e , not necessarily due to D ; call the 
changes due to X  or e  the “time effect/trend”. Then we use DD which is the 
BA of the T group minus the BA of the C group: 

 

3 3( | 1) ( | 0)E Y Q E Y QD = - D = ;  (1.4) 

 
the BA in (1.1) is the first half of the DD, which experiences both the time and 
treatment effects. The role of the second BA in DD is to remove the time effect from 
the first BA, using the C group that experiences the same time effect, but not the 
treatment itself. DD thus yields the desired treatment effect. 

When we select a 0Q =  group for DD, we should select a group that shares the 
same time effect with the 1Q =  group so that the time effect lurking in the BA of 
the T group can be removed by the BA of the C group. This aspect of selecting a 

0Q =  group that is similar to the 1Q =  group in time effect can be called 
‘matching’, as was already mentioned. We can check if the BA of the C group is 
zero (i.e., 3( | 0) 0)E Y QD = = , in which case DD reduces to the BA of the 1Q =  
group. 

As will be seen in detail later, the DD ID condition is 
 

0 0
3 3( | 1) ( | 0)E Y Q E Y QD = = D =   ( IDDD ) 

 
which generalizes the above IDBA , because IDDD  allows 0

3( | 1)E Y QD =  not to 
be zero as long as it is the same as 0

3( | 0)E Y QD = . Strictly speaking, however, this 
is not a generalization, because IDBA  does not involve the 0Q =  group while 
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IDDD  does. DD will be shown to identify 1 0
3 3( | 1)E Y Y Q- =  in (1.3) as BA does. 

Although IDDD  is the main DD ID condition to be invoked throughout this 
paper, a different DD ID condition also appears: 

 
0 0

3 2( ) ( )E Y E YD = D  or 0 0
3 2( | 1) ( | 1)E Y Q E Y QD = = D = . ( IDDDt ) 

 
IDDDt  requires equality along the time dimension ( 3t =  vs. 2t = ), whereas 
IDDD  requires equality across the cross-sectional group dimension ( 1Q =  vs. 

0Q = ). 
Going further, we can think of ‘triple difference (TD)’ which is a difference of 

two DD’s to allow 0 0
3 3( | 1) ( | 0)E Y Q E Y QD = ¹ D = . Given another group dummy 

G , the ID condition for TD will be shown to be 
 

0 0
3 3( | 1, 1) ( | 1, 0)E Y G Q E Y G QD = = - D = =  
0 0

3 3( | 0, 1) ( | 0, 0)E Y G Q E Y G Q= D = = - D = = . ( IDTD ) 
 

This generalizes IDDD  because IDTD  allows 0 0
3 3( | 1) ( | 0)E Y Q E Y QD = ¹ D =  

with 0,1G =  groups. Again, strictly speaking, IDTD  is not a generalization of 
IDDD , because IDDD  does not involve G  whereas IDTD  does. 

There is a TD which adds the extra DD along the time dimension, not along the 
cross-sectional group ( G ) dimension, and its ID condition is 

 
0 0 0 0

3 3 2 2( | 1) ( | 0) ( | 1) ( | 0)E Y Q E Y Q E Y Q E Y QD = - D = = D = - D = . ( IDTDt ) 
 

The relationship between IDTD  and IDTDt  is analogous to that between IDDD  
and IDDDt . Although we introduced various ID conditions for BA, DD and TD 
using panel data (i.e., YD  is used), analogous ID conditions exist for RCS. 

 
 

II. DD with Panel Data 
 

2.1. Identification with Panel Data 
 
Differently from (1.2) for BA where we subtracted and added the counterfactual 

0
3( | 1)E Y Q = , subtract and add the counterfactual 0

3( | 1)E Y QD =  after the first 
term of 

 

23 3 3( | 1) ( | 0)DD E Y Q E Y Qº D = - D =  
 

to obtain, due to 1 0
3 3 2( | 1) ( | 1)E Y Q E Y Y QD = = - = , 
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1 0 0 0 0
23 3 2 3 3 3( | 1) ( | 1) { ( | 1) ( | 1)}DD E Y Y Q E Y Q E Y Q E Y Q= - = - D = + D = - D = . 

 
The terms in { }×  drop out under IDDD  to make 23DD  equal to (1.3)―the 

effect on the treated at the post-treatment period―which BA also becomes under 
IDBA : 

 
1 0 0 0 1 0

23 3 2 3 2 3 3( | 1) ( | 1) ( | 1)DD E Y Y Q E Y Y Q E Y Y Q= - = - - = = - = . 

 
This is natural, because the effect is seen only for those whose itD  changes (i.e., 

1Q = ) and only at the time when itD  changes (i.e., at 3t = ). 
IDDD , often called the ‘same time effect’ or ‘parallel trend’ assumption, is that 

Q  is as good as randomized for 0
3YD . If multiple pre-treatment periods are 

available, then the Y  paths of the T and C groups in the pre-treatment periods 
can be presented to graphically demonstrate IDDD : the paths should be “parallel”. 
This parallelism should not be taken literally, because what is needed is the two Y  
paths moving together, possibly only with the same vertical difference over time. 
When the parallel paths do not hold, if there are multiple control groups whose 
convex combination can give a parallel path, then the combination may be used as a 
single control group, called ‘synthetic control’ (see Abadie et al., 2015 and references 
therein). 

To illustrate parallel paths, we simulated some data: with 1000N = , 45T =  
(periods in total) and 23t =  (treatment starting halfway), let 

 
2(1 0.5 0.01 ) 2 3 1[ ]it i it i itY t t Q X Q t Ut= + - + + + £ + , (0,1)itU N: , 

binary iQ  with equal probability, |( 0) [0,1]it iX Q U= : ,  

|( 1) [0,2]it iX Q U= :  

 
where the time effect is 21 0.5 0.01t t+ - , and the itX ’s distribution differs between 
the 0Q =  and 1Q =  groups. 

The left panel of Figure ‘Parallel Paths of Y , X  and OLS Residual Mean’ 
plots quadratic ( | )it iE Y Q  for each t with the upper two lines, and flat ( | )it iE X Q  
with the bottom two lines. The pre-treatment paths are parallel with the vertical 
difference 2, which is the sum of the Q  slope 1 and 2 { ( | 1) ( |it i it iE X Q E X Q´ = -

0)} 1= = , and the treatment effect 3 that is the slope of 1[ ]iQ tt £  is clearly visible 
at 23t =  in the figure not controlling X  despite the X  distribution difference 
between the two groups. For the right panel, we do the OLS of itY  on 

 
1,1[ 2], ,1[ ]t t T= =K , iQ , itX , 1[ ]iQ tt £ , 

 
but then plot the OLS residual mean computed setting 1[ ] 0iQ tt £ =  for the 
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1Q =  group so that the plot includes the jump magnitude 3 at 23t =  (solid line); 
the OLS residual mean for the 0Q =  group is also plotted (dashed line). 

 
[Figure 1] Parellel Paths of Y , X  and OLS Residual Mean 
 

 
 
Although we omitted 3

2W  in the conditioning set so far, we may want to make 
its presence explicit by writing IDDD  as 

 
0 3 0 3

3 2 3 2( | , 1) ( | , 0)E Y W Q E Y W QD = = D = :  (2.1) 

 
Q  is as good as randomized for 0

3YD  given 3
2W . That is, the part other than 3

2W  
in 0

3YD  (i.e., the error term in 0
3YD ) is balanced across the two groups. The error 

term in 0
3YD  is allowed to be related to 3

2W , as long as the relationship is the 
same across the two groups. With 3

2W  in the conditioning set, 23DD  becomes the 
3

2W -conditional effect 1 0 3
3 3 2( | , 1)E Y Y W Q- = . 

If we desire a marginal version free of 3
2W , then 3

2W  should be integrated out. 
Using the distribution 3

2 | 1W Q
F

=
 of 3

2 | 1W Q = , we obtain 
 

3
2

1 0 1 0 3
3 3 3 3 2 | 1

( | 1) ( | , 1) ( )
W Q

E Y Y Q E Y Y W w Q dF w
=

- = = - = =ò . 

 
We may use another distribution in this integration, such as 3

2 | 0W Q
F

=
 or 3

2W
F . But 

then, the resulting integral is something else, not 1 0
3 3( | 1)E Y Y Q- = . 

An alternative to IDDD  is “zero effect of Q  on 1 0
3 2Y Y- ”: 

 
1 0 1 0

3 2 3 2( | 1) ( | 0)E Y Y Q E Y Y Q- = = - = .  ( IDDD¢ ) 
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This IDDD¢  involving both 1Y  and 0Y  is, however, deemed to be less plausible 
than IDDD  involving only 0Y . Under IDDD¢ , 23DD  becomes the ‘effect on the 
untreated 0Q =  at 3t = ’: 

 
1 0

3 3( | 0)E Y Y Q- = . 

 
If both IDDD  and IDDD¢  hold, then 23DD  becomes the ‘effect on the 

population at 3t = ’ 1 0
3 3( )E Y Y- , because 23DD  equals both effects on the right-

hand side of 
 

1 0 1 0 1 0
3 3 3 3 3 3( ) ( | 0) ( 0) ( | 1) ( 1)E Y Y E Y Y Q P Q E Y Y Q P Q- = - = = + - = = . 

 
If we make the presence of 3

2W  explicit, 23DD  equals 1 0 3
3 3 2( | )E Y Y W- , and 

integrating out 3
2W  with 3

2W
F  gives 1 0

3 3( )E Y Y- . For simplicity, we will not 
further mention this aspect of conditioning on 3

2W  first and then integrating it out 
later. Further discussion on DD identification can be found in Lee and Kang (2006) 
and Lee (2016a). 
 
2.2. Estimation with Panel Linear Models 

 
Although we discussed ID using conditional means such as ( | 1)E Y Q =  

omitting 3
2W , if we make the presence of 3

2W  explicit, then estimating 
conditional means such as 3

2( | , 1)E Y W Q =  to implement DD is difficult unless 
the functional form is specified. For a two-wave panel data, for simplicity, we may 
use a panel linear model: 

 
1[ 3]it t q i d i w it i itY Q Q t W Ub b b b d¢= + + = + + +  

 
where tb  is a time-varying intercept, qb  is the group ( 1)Q =  effect, db  is the 
treatment effect, wb  is the slope of itW , id  is an unit-specific error, and itU  is 
an unit- and time-varying error. 

The simplest estimation with the above panel linear model is done by 
differencing the model at 3t =  so that it becomes a cross-section model with Q  
as a binary ‘treatment’: 

 

3 3 3 3i d i x i iY Q X Ub b b ¢D = D + + D +D  

 
because 1[ 3]i iQ t Q= =  at 3t =  and 0 at 2t = , and iC  in itW  drops out to 
leave only 3iXD  in 3iWD . Under 3 3 3( , ) ( , ) 0Cor U Q Cor U XD = D D = , the OLS to 
the 3YD  model is consistent for ( 3 , ,d xb b bD ), but non-zero correlations can be 
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allowed as follows (Lee, 2019); recall our discussion right after (2.1). 
Define the linear projection ( | )L Y Z  of Y  on Z  and its residual ( | )R Y Z  

as 
 

1( | ) ( ) ( )L Y Z E YZ E ZZ Z-¢ ¢º  and ( | ) ( | )R Y Z Y L Y Zº -  

 
where 1( )E- ×  stands for inverse. With 3(1, )Z X¢ ¢= D , rewrite the above 3YD  
equation as 

 

3 3 3( , )x dY Z Q Ub b b¢D = D + +D  

 
to obtain 3 3( |1, )L Y XD D  and 3 3( |1, )R Y XD D : 

 

3 3 3 3 3 3( |1, ) ( , ) ( |1, ) ( |1, )x dL Y X Z L Q X L U Xb b b¢D D = D + D + D D  

3 3 3 3 3( |1, ) ( |1, ) ( |1, )dR Y X R Q X R U XbÞ D D = D + D D   

(as 3( , )x Zb b ¢D  drops out). 

 
This “partial linear regression model” shows that 3 3{ ( |1, ), ( |1,Cor R Q X R UD D

3 )} 0XD = , which allows Q  and UD  to be related through 3XD , is enough for 
the OLS to the 3YD  model to be consistent for db , although not necessarily for 

3( , )xb bD . 
As an example, we look at effects of “Tayo” bus (Hwang and Lee, 2018) which is 

just an usual bus with a makeover using cute animation characteristics on its 
exterior. In April and May of 2014, Seoul introduced 4 and 100 Tayo buses, 
respectively, along some bus stops. Seoul has 25 districts, each district has about 17 
‘dongs’, and the overall number of bus stops in Seoul is about 8070. 

The treatment in this study is not just ‘whether a bus stop gets any Tayo bus 
route ( )Q ’ times April/May dummy, but the number of Tayo bus routes that go 
through the bus stop, which is the treatment dose/intensity; see Campbell and 
Brakewood (2017) for a related example with the number of bike docks as the 
treatment (bike-sharing) intensity. A similar situation occurs with a minimum wage 
increase: when a minimum wage goes up, industries are affected differently, 
depending on the gap between the industry average wage and the new minimum 
wage, and the gap reveals the treatment intensity. 

Since only dong-level aggregate variables are available, dividing the dong-level 
variables by the number of the bus stops in the dong, an ‘averaged dong model per 
bus stop’ is obtained. Table ‘OLS for Differenced Monthly Rider Number’ shows 
that one more Tayo bus route at a bus stop increases its riders there by 54 in April 
(insignificant) and 103 in May (significant) with some covariates including the 
number of women at each dong controlled. Since the dong-level correlation 
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between the number of women and the number of men is 0.99 in the data, 
controlling the number of women is essentially the same as controlling the dong 
population size. Because it costs only about $1000 for a Tayo bus makeover and 
because the bus fare was about $1 per trip within the city boundary, the table shows 
that the Tayo bus policy is a highly cost-effective treatment. 

 
OLS for Differenced Monthly Rider Number with 423N =  ‘Dongs’ 

 April-March ˆ
db  (tvc, tv) May-March ˆ

db  (tvc, tv) 

# Tayo routes 54.0 (0.31, 0.38) 103 (1.72, 2.24) 
# women 15.3 (4.5, 5.3) 17.4 (8.4, 8.5) 

tvc, t-value for dongs clustered; tv, t-value; R2 = 0.33 & 0.37 

 
Instead of applying OLS to the differenced linear model which controls 

covariates parametrically, we can apply other estimators that control XD  semi- or 
non-parametrically. Among those estimators, Lee’s (2018) simple OLS-probit-based 
estimator for the effect on the population performs best, nearly dominating the 
other alternatives such as propensity matching, regression imputation and (inverse 
probability) weighting estimators. 

For the effect on the treated, Abadie (2005) proposed a weighting estimator that 
is a sample analog of 

 
( 1| )

( 1) 1 ( 1| )
Y Q P Q X

E
P Q P Q X

ì üD - = D
í ý

= - = Dî þ
, 

 
replacing ( 1| )P Q X= D  with probit/logit and ( 1)P Q =  with the T group 
proportion. Weighting estimators, however, tend to be numerically unstable due to 
the problem of denominators close to zero. 

Both Lee (2018) and Abadie’s (2005) estimators specify only the Q  equation, 
but not the YD  equation. This suggests that, although we conditioned only on 

XD  because YD  depends only on XD  in the linear model, we may want to 
condition on 3

2W  more extensively for Lee (2018) and Abadie’s (2005) estimators, 
in case the linear model does not hold. 

For more than two waves, consider a panel linear model: 
 

1[ ]it t q i d i w it i itY Q Q t W Ub b b t b d¢= + + £ + + + , 0, ,t T= K ;  1(M )  

 
the usual panel ‘random-effect’ estimators can be applied to this. Now, observe 

 

1 2 1 1( )1[ 2] , , ( )1[ ]t Tt t Tb b b b b bD = D + D -D = + + D -D =K . 
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First-difference 1M  to obtain, as 1[ ] 1[ ]i iQ t Q tt tD £ = = , 
 

1 2 1 1( )1[ 2] , , ( )1[ ]it TY t t Tb b b b bD = D + D -D = + + D -D =K  

1[ ]d i x it itQ t X Ub t b ¢+ = + D +D .  1(M )¢  

 
The usual panel ‘fixed-effect’ estimators can be applied to this differenced model. 

Alternatively to using panel data estimators, we can average the before and after 
periods to get only two averaged periods around t , which can be then differenced 
to obtain a single cross-section model. This may sound too “elementary” an 
approach, but as Bertrand et al. (2004) argued, this could be a robust way to conduct 
DD inference when many panel waves are highly correlated. 

As an empirical example for DD with more-than-two-wave panel, consider 
effects of daylight saving time (DST) which is intended to save energy by starting 
working early when there is more light. Clocks are moved forward in the spring 
(and then back); see Choi et al. (2017) and references therein for DST in general. 
The Northeastern counties in Indiana adopted DST in 2006, with the other 
counties having DST already. The Northeastern counties constitute the T group, 
and the other counties the C group. Kotchen and Grant (2011) used panel data with 

itY = ln(average daily residential electricity consumption in kilowatt hours) and 
Table ‘Daylight Saving Time on Electricity’ shows that DST increased electricity 
usage at home, contrary to the goal of DST. This empirical example is unusual, 
because the C group is always treated, as opposed to never treated. This is ‘DD in 
reverse’ (Kim and Lee, 2019), to be examined in detail later. 

 
Daylight Saving Time on Electricity (no covariate controlled) 

 2004~2005 (before) 2006 (after) BA 
T group 3.1256 3.1814 0.0558 
C group 3.2239 3.2607 0.0368 

DD (N = 384,083) 0.0190 

 
2.3. Generalizations of Panel Linear Model 

 
If the treatment effect varies over time or if the treatment timing varies across 

individuals, then we may use 
 

0

1[ ]
iT

it t q i da i i w it i it
a

Y Q Q t a W U
t

b b b t b d
-

=

¢= + + = + + + +å   (2.2) 

 
where it  is the treatment timing for individual i , and 0db  is the treatment 
effect of getting treated in the same period, 1db  is the treatment effect of getting 
treated one period ago, etc. The covariates itW  may interact with iQ  so that 
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i itQ W  appears extra in the model, and itW  may interact also with the treatment 
1[ ]i iQ t at= +  so that 1[ ]it i iW Q t at= +  appears as well, although we omit these 

generalizations. 
We call the general case just examined ‘varying effect (across time) and varying 

timing (across individuals)’. In view of this, we can also think of models with 
constant effect ( db ) and constant timing (t )―the basic DD model―constant effect 
( db ) and varying timing ( it ), and varying effect 0 1( , , )d db b K  and constant 
timing (t ). All these special cases can be handled by the above varying-effect and 
varying-timing model. 

One caution is that there are two senses in which treatment effect is time-varying: 
calendar-time effect and duration effect. The former is that the effect differs 
depending on when the treatment takes place, and the latter is that the effect differs 
depending on how long ago the treatment was administered. Our time-varying 
effect is the duration effect, not the calendar-time effect; we may accommodate both 
(with ,da tb ), but for simplicity, we entertain only the duration effect. 

An interesting question is what happens if we use the constant effect model 
although the effect is actually time-varying. For a simple model 

 

1
0

1[ ]
T

it da i it
a

Y Q t a U
t

b b t
-

=

= + = + +å , 

 
if we use its constant-effect version with 1[ ]d iQ tb t £  replacing 0 1[T

a da iQ tt b-
=å =

]at + , then it can be shown that the panel OLS for db  is consistent for the 
average of all effects, 1

0 1 ,( 1) ( , , ).d d d TT tt b b b-
-- + + + +K  For more general 

models, our conjecture is that we get to estimate a weighted average of the time-
varying effects. 

Related to this issue, instead of the “lasting” treatment 1[ ]it iD Q tt= £ , consider 
the ‘one-shot/one-off’ treatment 1[ ]it iD Q tt= =  which is applied only at one 
period to be withdrawn next; e.g., Japan gave out shopping coupons in 1999 (Hsieh 
et al., 2010), and the Taiwanese government gave out shopping vouchers in 2009 to 
stimulate the economy in the wake of the 2008 financial crisis (Kan et al., 2017). 
Unless otherwise mentioned, however, we will stick to lasting treatment. One 
reason for this is simplicity, and another reason is that even if the treatment is one-
off, still its effect can be well found using (2.2) allowing time-varying effects. If we 
use 1[ ]it iD Q tt= £  for one-shot treatment, however, the effect will come out 
almost zero, because we get to average all future effects where only one effect (or a 
few right after t ) is non-zero. 

Recalling the minimum wage example with treatment dose, suppose that 
industry j  is affected by an observed dose jl . One model for this is (covariates 
omitted), with ‘ wagemin ’ for minimum wage, 
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1 1

1[ ]
J J

it t qj ij d j ij i it
j j

Y Q Q t Ub b b l t d
= =

= + + £ + +å å ,  

min min1 wage w[ ](age wage wage )j jjl > -º  

 
where ijQ º 1[ i  in industry j ], qj ijQb  is the intercept-shift in industry j , and 
industry 0 with 0 0l =  serves as the base industry. Usually in DD, we consider 
only a common intercept shift by q iQb  for the T group as in (2.2), but this model 
allows different intercept shifts qjb ’s across all industries. The treatment dose jl  
is similar to Card and Krueger (1994, p.779) who used / wagej jl  instead of jl . 

The preceding model is a special case with 0pjb =  for all j  of a more general 

model: 
 

min1[wage wage ] 1[ ]it t qj ij pj j ij
j j

Y Q Q tb b b t= + + > £å å   

1[ ]d j ij i it
j

Q t Ub l t d+ £ + +å   

 
where pjb  is the intercept-shifting (or constant) part of the treatment effect for 
industry j , and d jb l  is the effect proportional to the treatment dose jl . The 
mere fact of getting treated might have an effect pjb , and d jb l  is the extra effect 
depending on the level of jl . 

South Korea raised its minimum wage by about 17% in January 2018. Its effect 
on industry ( 1)jj Q =  at month t  may be estimated by a BA such as 

 
1 0

18, 17, 18, 17,( | 1) ( | 1) ( | 1) ( | 1)t j Dec j t j Dec jE Y Q E Y Q E Y Q E Y Q= - = = = - =   

 
for outcome Y  (employment, price level, etc.) and month t . Rewrite this BA as 

 
1 0 0 0

18, 18, 18, 17,( | 1) ( | 1) ( | 1) ( | 1)t j t j t j Dec jE Y Q E Y Q E Y Q E Y Q= - = + = - =  
1 0

18, 18,( | 1) ( | 1)t j t jE Y Q E Y Q= = - =  if 0 0
18, 17,( | 1) ( | 1)t j Dec jE Y Q E Y Q= = = . 

 
This BA ID condition is, however, not plausible due to the economy 
expanding/shrinking, or due to the monthly variation between month t  and 
December. The following form of DD addresses this concern. 

Omitting ‘ 1jQ = ’ for simplicity, we can do double differencing in the time 
domain: 

 

18, 17, 17, 16,( ) ( ) { ( ) ( )}t Dec t DecE Y E Y E Y E Y- - -   
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1 0 0 0
18, 17, 17, 16,( ) ( ) { ( ) ( )}t Dec t DecE Y E Y E Y E Y= - - -  
1 0 0 0

18, 17, 18, 17,( ) ( ) { ( ) ( )}t Dec t DecE Y E Y E Y E Y= - - -   
0 0 0 0

18, 17, 17, 16,[ ( ) ( ) { ( ) ( )}]t Dec t DecE Y E Y E Y E Y+ - - -   
1 0

18, 18,( ) ( )t tE Y E Y= -  under 0 0 0 0
18, 17, 17, 16,( ) ( ) ( ) ( )t Dec t DecE Y E Y E Y E Y- = - . 

 
Unlike the BA ID condition 0 0

18, 17,( ) ( )t DecE Y E Y= , this DD ID condition allows 
0 0

18, 17,( ) ( ) 0t DecE Y E Y- ¹  as long as the difference stays the same as one year before, 
which is an example for IDDDt  that appeared earlier. 

Differently from the usual DD with “two cross-section group-wise BA’s” for 
1,0,Q =  here the DD consists of two time-wise BA’s for the single group 1jQ = ; 

hence, call this “time-wise DD”. Later when TD is examined, similar forms of TD 
will be seen: TD with two cross-section group-wise DD’s, and TD with two time-
wise DD’s for a single group. 

 
 

III. DD with Repeated Cross-Sections (RCS) 
 
This section examines DD with RCS. Our ID and estimation discussion for RCS 

is relatively brief, because the main points were seen already with panel data. Some 
topics relevant to both panel data and RCS such as limited dependent variable 
models and “fuzzy DD” below, but left out in the preceding panel section due to 
the length concern, are also examined in this section. 

In RCS, an individual is observed only once. A person may be observed more 
than once, but the possibility is slim and thus ignored. With 2,3t = , Define the 

3t =  sampling dummy: 
 

iS = 1[individual i  sampled at 3t = ]; 

 
where ‘ S ’ is from ‘sampled’. What is observed for RCS with 2,3t =  is 

 

iQ , iS , 2 3(1 )i i i i iW S W S W= - +  and 2 3(1 )i i i i iY S Y S Y= - + . 

 
For more than two periods, let iS  denote the sampled period and 1[ ]it iS S tº =  

to have 
 

i it it
t

W W Sºå , i it it
t

Y Y Sºå  and i it it
t

U U Sºå . 

 
Assume that S  is independent of all potential responses, Q  and W . This aspect
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―the relationship between S  and the other random variables―does not arise in 
panel data, although unbalancedness in panel data is an analogous problem. 

 
3.1. Identification with RCS 

 
DD with RCS is 
 

23 ( | 1, 1) ( | 1, 0)DD E Y Q S E Y Q Sº = = - = =  
{ ( | 0, 1) ( | 0, 0)}E Y Q S E Y Q S- = = - = =   

1 0 0 0
3 2 3 2( | 1) ( | 1) { ( | 0) ( | 0)}E Y Q E Y Q E Y Q E Y Q= = - = - = - = . 

 
Then 

 
1 0

23 3 3( | 1)DD E Y Y Qº - =  under 
0 0 0 0

3 2 3 2( | 1) ( | 1) ( | 0) ( | 0)E Y Q E Y Q E Y Q E Y Q= - = = = - = ; 4(ID )D  

 
we write “ 4ID D ”, as 4 groups are involved. The right-hand side of 4ID D , which is 
the second part of 23DD , is identified: if it is zero, use just the first half of the DD. 

Put together the same-period expected values in 4ID D  on the same side: 
 

0 0 0 0
3 3 2 2( | 1) ( | 0) ( | 1) ( | 0)E Y Q E Y Q E Y Q E Y Q= - = = = - = . 4(ID )D¢  

 

4ID D¢  is a ‘stationarity’ condition, because the effect of Q  on 0
3Y  at 3t =  is the 

same as the effect of Q  on 0
2Y  at 2t = . The right-hand side of 4ID D¢  is also 

identified, and if it is zero, use just the cross-sectional group difference at 3t =  
instead of DD. Which part of DD might be redundant can be checked out to reduce 
a DD to a BA. A caution is “ 0 0 0 0

3 2 3 2( | 1) ( | 1) ( | 1)E Y Q E Y Q E Y Y Q= - = ¹ - = ”, 
because what actually appears with tW  in is 0 0

3 3 2 2( | , 1) ( |E Y W w Q E Y W= = - =
, 1)w Q = , which cannot be merged. 
For the effect on the untreated, it can be easily shown that 
 

1 0
23 3 3( | 0)DD E Y Y Q= - =  under 
0 0 1 0

3 2 3 2( | 1) ( | 1) ( | 0) ( | 0)E Y Q E Y Q E Y Q E Y Q= - = = = - = . 4(ID )D¢¢  

 
Under 4ID D  and 4ID D¢¢ , 1 0

23 3 3( )DD E Y Y= - . 
Suppose Y  is a limited dependent variable (LDV) based on a latent continuous 

Y*  whose model is linear. For this, the DD ID findings hold for Y* , and b  for 
Y*  can be estimated with probit, tobit, etc., depending on the nature of the LDV. 
That is, the treatment effect on Y*  is the slope of QS , which gives the DD 
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interpretation in terms of ( | )E Y* × , but the DD interpretation in terms of ( | )E Y ×  
no longer holds; see, e.g., Puhani (2012) and Kim and Lee (2017). 

If 0Y ³  as in count response which is not based on any latent response Y* , we 
can use the popular exponential specification: 

 

1( | , , ) exp( )q d wE Y Q S W S Q QS Wtb b b b b¢= + + + + . 

 
Here db  can be interpreted as a “ratio in ratios (RR)” effect―ratio is analogous to 
BA: 

 

1 1

1 1

exp( ) exp( )
/

exp( ) exp( )
dq d w w

q w w

w w
e

w w
t bt

b b b b b b b b
b b b b b

¢æ ö+ + + + ¢æ ö+ +
=ç ÷ ç ÷ç ÷¢ ¢+ + +è øè ø

: 

 
D QS=  increases ( | , , )E Y Q S W  by exp( )db  times. 

In the linear model, the group effect qb  and time effect tb  are removed by 
DD to result in dDD b= . Analogously, with an exponential model, the group and 
time effects are removed by RR to result in exp( )dRR b= . This is no surprise when 
we use the exponential model, but if we proceed only with conditional means, then 
the following may be surprising: 

 
( | , 1, 1) ( | , 0, 1)

/
( | , 1, 0) ( | , 0, 0)

d
E Y W Q S E Y W Q S

e
E Y W Q S E Y W Q S

bæ ö æ ö= = = =
=ç ÷ ç ÷= = = =è ø è ø

. 

 
In South Korea, platform screen doors (PSD) in subways were installed to 

prevent suicides. Using the monthly suicide number panel data over 2003-2012 at 
121 subway stations of Seoul Metro, which is one of the Seoul subway companies, 
Chung et al. (2016) estimated the effect. Seoul Metro installed PSD’s over 2005-
2009, which gave a DD framework with different treatment timings across different 
stations. There were two types of PSD: ‘full PSD’ extending from floor to ceiling, 
and ‘half PSD’ extending chest-high at 1.65m. Poisson regression gave the slope of 
PSD dummy –2.2 with 95% confidence interval (CI) (–3.5, –0.84): PSD reduced 
subway suicides by 100{1 exp( 2.2)} 89%- - = . When separate dummies for full 
PSD and half PSD were used, the slopes were, respectively, –17 with CI (–18, –16) 
and 0.75 with CI (–1.13, 2.62): full PSD eradicated subway suicides, but half PSD 
was useless. 

 
3.2. Estimation with RCS 

 
With treatment applied at t  onwards, consider a constant-effect and constant-
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timing panel linear model without the individual-specific effect id : 
 

1[ ]it t q i d i it w itY Q Q t W Ub b b t b¢= + + £ + + . 

 
The corresponding RCS model is, with 1[ ]i i iD Q St= £  and 1[ ]it iS S tº = , 

 

1 21 2 1, ,i i T iT q i d i i w iY S S Q D W Ub b b b b b¢= + D + +D + + + +K  

 
where the sampling dummies capture the time effects, and individual i  is treated 
( 1[ ] 1)i i iD Q St= £ =  if he/she is sampled at or after t  with 1iQ = . We can do 
the OLS of Y  on 2(1, , , , , , )TS S Q D WK . 

For the basic two period constant-effect and constant-timing case, instead of the 
OLS, we may use a weighting estimator for the effect on the treated in Abadie (2005) 
that is a sample analog for 

 
( 1| ) ( ) ( 1| )

( 1) ( ){1 ( )} ( 1| ) ( 0| )
P Q W S E S Q P Q W

E Y
P Q E S E S P Q W P Q W

é ù= - - =
× ×ê ú= - = =ë û

. 

 
As was already noted, weighting estimators tend to be numerically unstable though. 

A generalization of the constant-effect and constant-timing panel linear model is 
a varying-effect and varying-timing panel linear model: 

 

0

1[ ]
iT

it t q i da i i it w it
a

Y Q Q t a W U
t

b b b t b
-

=

¢= + + = + + +å . 

 
For the RCS model derived from this, we can do the OLS of iY  on 

 

21, , ,i iTS SK , iQ , 0 1 , 1, , ,i i i TD D D -
% % %K , iW  with 1[ ]ia i i iD Q S atº = +%  

 
where the treatment effect varies, depending on when the individual is sampled; 
1[ ] 1i iS at= + =  means ‘sampled a  periods after it ’. Clearly, this includes 
‘constant-effect and varying-timing’ and ‘varying-effect and constant-timing’ as 
special cases. 

As an example for varying time-effect and constant-timing, Eissa and Liebman 
(1996) examined the effect of earned income tax credit (EITC) on work or not 
(binary Y ); EITC reduces income tax, and is applied only to single women with 
low income and at least one children. The Current Population Survey data for 
1984-1986 (before) and 1988-1990 (after) were used, which is a RCS, where the T 
group is EITC-eligible with children and the C group is EITC-ineligible due to no 
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children although their income is low enough. 
Table ‘Probit with Marginal Effect in { }×  for EITC’ is part of the results in 

Eissa and Liebman (1996). When effect constancy is assumed in the left column, 
the estimated marginal effect (i.e., the effect on ( 1| )P Y W= ) is 0.019, which is 
more or less the average of the three marginal effects (0.008, 0.029 and 0.028) on the 
right column where the effect is allowed to vary over time. The initial period effect 
is small (0.008), perhaps due to the lack of policy awareness in the beginning. 
Unawareness of a policy despite its existence does happen; see, e.g., Kim et al. (2012) 
and Kuo (2012). 

 
Probit with Marginal Effect in { }×  for EITC (SE in ( )× ) 

 Time-Constant Effect Time-Varying Effect 
Kids (Q) -0.250 (0.029) -1.462 (0.110) 
Post86 0.019 (0.031)  

Kids´ Post86 0.074 (0.030) {0.019 (0.008)}  
Kids´ 1988  0.033 (0.057) {0.008 (0.014)} 
Kids´ 1989  0.116 (0.058) {0.029 (0.015)} 
Kids´ 1990  0.112 (0.057) {0.028 (0.015)} 

 
Hagiwara et al. (2013) examined effects of a maternal child health care book on 

health-related behaviors in Palestine. The book has 56 pages, and contains helpful 
health information and the health records of mother and children before and after 
birth. The data are a RCS collected Jan.-Feb., 2007 (before period) and March-April 
2008 (after): 260 and 270 women in the T group before and after, and 70 and 70 
women in the C group. An interesting point is that the T group is from 24 centers 
and the C group is from 6 centers, where the centers were randomly selected from 
49 health centers. This gave a panel feature to the data (in addition to a 
randomization feature), because some women are from the same center, which is 
then taken care of by including the center dummies in estimation. 

Part of Table 2 in Hagiwara et al. (2013) is Table ‘Effect of Health Book on 
Health Behaviors’; the response variables other than Center Hours are binary to 
which OLS was applied as well. Column ‘Appoint’ for being aware of the next 
appointment shows that, although the treatment itself is not significant, its 
interaction with primary education dummy significantly increases the awareness. 
Column ‘Center Hours’ for the hours spent in the center shows that, although 1st 
delivery itself has a significant negative effect, its interaction with D  has a 
significantly positive effect (26 hours). In Column ‘On Breast Feed’ for knowledge 
on breast feeding, the interaction between D  and being literate increases the 
knowledge probability by 32%. In Column ‘On Rupture’ for knowledge on 
membrane rupture, D  increases the knowledge probability by 20%. 
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Effect of Health Book on Health Behaviors: Estimate (t-value) 
 Appoint Center Hours On Breast Feed On Rupture 

D  0.028 (0.66) -6.1 (0.64) -0.12 (1.1) 0.20 (2.0) 
D´ literate 0.11 (1.4) -4.8 (0.26) 0.32 (1.9) 0.083 (0.63) 
D´ primary 0.083 (2.3) 8.6 (0.83) -0.009 (0.08) -0.10 (1.1) 

D´ 1st delivery -0.16 (1.5) 26 (2.1) 0.017 (0.11) -0.11 (0.83) 
1st delivery 0.077 (1.8) -35 (3.2) -0.056 (0.44) -0.02 (0.21) 

Appoint, aware of next appointment; Center Hours, hours in center; primary, primary edu. 
On Breast Feed, breast feeding knowledge; On Rupture, membrane rupture knowledge 

 
3.3. Fuzzy DD 

 
Sometimes 1[ ]it iD Q tt¹ £  happens, which may be called “fuzzy DD”, relative 

to the usual “sharp DD” with 1[ ]it iD Q tt= £ . We can then use 1[ ]iQ tt £  as an 
instrument for itD , if 1[ ]iQ tt £  is plausibly excluded from the itY  model. The 
terminology “fuzzy DD” and “sharp DD” are taken from the ‘fuzzy RD’ and ‘sharp 
RD’ in the RD literature, and they were used first in Lee (2016a). De Chaisemartin 
and D’Haultfoeuille (2018) used the same terminology later in showing that the 
IVE estimates a local (weighted) average treatment effect under certain assumptions. 

In 1959, Norway decided to increase the mandatory schooling years from 7 to 9: 
students should remain at school until age 16 as they start schooling at 7. All 
municipalities were mandated to implement the reform by 1973. As the 
consequence, the municipalities have different reform years over 1960~1973; D  is 
schooling years (not binary) in this example. Whether a woman was affected by the 
reform or not was determined by her age (say, 1[ ]tt £ ) and the municipality of 
residence (say, Q ). The chances for individuals moving across municipalities 
during the periods are thought to be very low, and thus ignored. 

The first cohort possibly subject to the reform was those born in 1947, because 
they were supposed to finish primary school in 1961=1947+14. The last cohort that 
might have not experienced the reform was those born in 1958, because they could 
have completed 7 year compulsory schooling by 1972=1958+14. Monstadt et al. 
(2008) observed all women born between 1947 and 1958 until 2002. In 2002, the 
youngest were 44 as they were born in 1958, which means that almost all women in 
the data had completed fertility. The model in Monstadt et al. (2008) is 

 
1958

1
1948

1[i cj
j

Y ib b
=

= + å  born in year j ] 

672

2

1[mj
j

ib
=

+å  in municipality j ] d i iD Ub+ +  

 
and IVE is applied with schooling iD  instrumented by 1[ i  subject to reform]. 
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Part of Table 2 in Monstadt et al. is (‘*’ for significance at 5% level) 
 

Y   #children 1st birth in 15-20 1st birth in 20-25 1st birth in 35-40 
OLS -0.013 (0.004)* -0.032 (0.001)* -0.024 (0.001)* 0.005 (0.000)* 
IVE -0.009 (0.087) -0.080 (0.039)* 0.044 (0.032) 0.021 (0.009)* 

 
While OLS indicates a significant decrease by 0.013 in #children, IVE does not. 

IVE shows 8% decrease in the first birth in ages 15-20, and 2.1% increase in ages 35-
40: women postpone births due to more schooling, but schooling does not affect the 
overall fertility. This is one of a few recent studies showing no effect of education on 
fertility to challenge the conventional “wisdom” that education decreases fertility; 
see Kan and Lee (2018) and references therein. 

 
 

IV. DD in Reverse (DDR) 
 
In some DD, the control group is always treated, instead of already untreated, 

which is called “DD in reverse (DDR)”. Here, we examine DDR based on Kim and 
Lee (2019). One example for DDR is building a bridge for a region across a river, 
along which other regions already have bridges (Mahmud and Sawada, 2018), and 
more examples can be seen in Chemin and Wasmer (2009) and Kotchen and Grant 
(2011). More generally, when the treatment timing it  varies across individuals, 
DDR occurs at 1, ,max i N it= K  because all the other individuals have been treated. 
Since the C group is always treated in DDR, it is awkward to call the 1Q =  group 
the ‘T group’; instead, call them the ‘switching group’. 

DDR takes the same form as DD, but the potential responses differ: 
 

23 ( | 1) ( | 0)DDR E Y Q E Y Qº D = - D =  
1 0 1

3 2 3( | 1) ( | 1) ( | 0)E Y Q E Y Q E Y Q= = - = - D = . 

 
Subtract and add the counterfactual 1 1 1

3 2 3( | 1) ( | 1) ( | 1)E Y Q E Y Q E Y Q= - = = D =  
after the second term to get 

 
1 0 1 1

23 3 2 3 2( | 1) ( | 1) { ( | 1) ( | 1)}DDR E Y Q E Y Q E Y Q E Y Q= = - = - = - =  

      1 1 1 0
3 3 2 2( | 1) ( | 0) ( | 1)E Y Q E Y Q E Y Y Q+ D = - D = = - =  under 

1 1
3 3( | 1) ( | 0)E Y Q E Y QD = = D = . (ID )DDR  

 
DDR is the effect on the “switched” ( 1Q = ) at the pre-switch period 2t = , differently 
from DD identifying the effect on the 1Q =  group at the post-treatment period 

3t = . 
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Consider a panel data model for 2,3t =  with (1 ) 1[ 3]it i iD Q Q t= - + = : 
 

(1 1[ 3])it t q i d i i it w itY Q Q Q t W Ub b b b¢= + + - + = + + . 

 
This gives a RCS model for OLS: recalling iS º 1[ i  sampled at 3t = ], 

 

2 3 2( ) (1 )i i q i d i i i i w iY S Q Q Q S W Ub b b b b b¢= + - + + - + + +  

2 3 2( ) ( ) ( )d i q d i d i i i w iS Q Q S W Ub b b b b b b b¢= + + - + - + + + : 

 

db  is still estimated by QS  as in DD. The difference from DD is that the slope of 
Q  in DDR is q db b- , whereas it is qb  in DD. If ( ,1 )Q Q QS- -  is used as 
regressors instead of ( , )Q QS  in DDR, then the slope of Q  becomes qb . 

Since both groups are treated, one may think of identifying the treatment effects 
separately, say 0db  and 1db , for the two groups 0,1Q = . This, however, does not 
work as only 1db  is identified, which can be seen in the following generalized 
panel model: 

 

0 1(1 ) 1[ 3]it t q i d i d i it w itY Q Q Q t W Ub b b b b¢= + + - + = + +  

0 0 1( ) ( ) 1[ 3]t d q d i d i it w itQ Q t W Ub b b b b b¢= + + - + = + + . 

 
As elementary as this may look, this demonstrates that the treatment effect is 
estimable only for those whose treatment status changes. 

As an empirical example, the South Korean work hours have been reduced from 
44 to 40 in different years, depending on firm size: 

 
1000+ employees (big firms) 300-999 (small firms) 100-299 50-99 20-49 5-19 

2004 ( 2t = ) 2005 ( 3t = ) 2006 2007 2008 2011 

 
The enforcement of the law was lax, however, and thus it is unclear to what 

extent the law affected the actual work hours, as well as the real wage. DD for 2003-
2004 provides the effect on big firms (treated) at 2004 (post-treatment period), 
whereas DDR for 2004-2005 provides the effect on small firms (switched) at 2004 
(pre-switch period). 

Using the Occupational Employment Statistics in South Korea, which is a RCS, 
Kim and Lee (2019) applied both DD and DDR and some of their findings is in 
Table ‘DD and DDR Effects with No Covariate Controlled’ which shows a 
reduction of about two hours and an increase in weekly real wage by about $50-70; 
both changes are statistically significant. 
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DD and DDR Effects with No Covariate Controlled: Average (SE) 
Y : Weekly work hours Weekly wage (in $10) 

 Small Firms Big Firms Small Firms Big Firms 
2003: 52.88 52.66 63.11 71.55 
2004: 50.84 48.46 60.86 76.25 

2004-2003: -2.04 -4.20 -2.25 4.70 
DD for big firm firms 2004: -4.20+2.04=-2.16 (0.45) 4.70+2.25=6.95 (1.37) 
DDR for small firms 2004: -1.87 (0.44) 4.88 (1.41) 

 
 

V. Synthetic Control 
 
Suppose there is a single treated individual and multiple possible controls, but 

none of the controls looks good on its own. Then, it is conceivable to linearly 
combine the controls to come up with an “artificial” control individual who is a 
good control in the sense that its “artificial past” is parallel to the untreated past of 
the treated individual. The artificial control is called a ‘synthetic control’; see Abadie 
and Gardeazabal (2003), Abadie et al. (2010, 2015) and references therein. 

 
5.1. Main Idea 

 
Consider J  subjects 1, ,j J= K  observed for periods 1, ,TK , and only 

subject J  is treated at the last period T ; otherwise, no treatment. The goal is to 
estimate 1 0

JT JTY Y- , the effect for subject J  at the post-treatment period T , using 
a synthetic control 1

1
J
j j jTw Y-
=å  as the counter-factual 0

JTY , where the weight jw ’s 
satisfy 1

1 1J
j jw-
=å =  and 0jw ³ . Then the effect estimator is 

 
1

1

J

JT j jT
j

Y w Y
-

=

-å . 

 
If there are multiple individuals in the T group, then we may use the T group 
aggregate as a single individual, or a synthetic control may be constructed separately 
for each individual in the T group; see, e.g., Kreif et al. (2016). 

To find 1 1( , , )Jw w w - ¢º K , define pre-treatment variables 
 

1 , 1 1 , 1( , , , , , )j j j T j j TZ Y Y X X- -¢ ¢ ¢º K K . 

 
For a given weighting matrix V , minimize with respect to (wrt) w  

 

1 1

1 1

J J

J j j J j j
j j

Z w Z V Z w Z
- -

= =

¢æ ö æ ö
- -ç ÷ ç ÷

è ø è ø
å å . 
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If not for the constraints 1
1 1J

j jw-
=å =  and 0jw ³ , this is a OLS/GLS problem of 

predicting JZ  with regressors 1 1, , JZ Z -K . 
As for choosing V , Abadie et al. (2010) chose V  as a p.d. diagonal matrix 

minimizing the prediction error only for 1 , 1( , , )J J TY Y -K  using the control group 
Y ’s and weight ( )w V  as follows: for a given V , ( )w V  is obtained in the above 
OLS/GLS set-up, then V  is chosen by minimizing 

 
1 1

, , , ,
1 1

( ) ( )
J J

J pre j j pre J pre j j pre
j j

Y w V Y Y w V Y
- -

= =

¢ì ü ì üï ï ï ï- -í ý í ý
ï ï ï ïî þ î þ

å å  where , 1 , 1( , , )J pre j j TY Y Y - ¢º K . 

 
This V -choice scheme is admittedly ad-hoc, but since the eventual goal is finding 
a synthetic control that satisfies the same time-effect assumption (i.e., parallel 
untreated paths in the past for the two groups), this way of choosing V  seems 
sensible, although restricting V  to a diagonal matrix looks still arbitrary. 

As an empirical example, Abadie et al. (2010) analyzed the effect of California 
(CA) Proposition 99 in 1988 which increased the cigarette exercise tax by 25 cents 
per pack. State panel data over 1970-2000 where itY  is per capita cigarette 
consumption were used, with a donor pool of 38 states, excluding the states with 
other smoking-discouraging measures. The “smoking predictor” jZ  in Abadie et 
al. (2010) includes the 1980-1988 averages of cigarette prices, logged per capita 
GDP, % population aged 15-24, per capita beer consumption, and ,1975iY , ,1980iY  
and ,1988iY . When the w  estimate was obtained, positive weights were only for 
Connecticut (0.164), Colorado (0.069), Montana (0.199), Nevada (0.234) and Utah 
(0.334). Abadie et al. (2010) concluded that smoking declined by 26 packs per capita 
per year due to the CA proposition 99, whereas a previous study found a decline of 
only 14 packs. 

 
5.2. Inference with Permutation Test 

 
Inference for synthetic control is done with ‘permutation/randomization test’. To 

understand permutation test, consider 5 individuals ( , , , , )a b c d eY Y Y Y Y  with 
( , )a bY Y  in the T group, and the remaining three in the C group. Regard these Y  
values as fixed, and think of assigning artificially the 5 individuals to the T and C 
groups. Obtain the actual treatment effect from the data with ( , )a bY Y  and 
( , , )c d eY Y Y  in the T and C groups, and a ‘pseudo effect’ from ‘pseudo data’ 
( , )d eY Y  and ( , , )a b cY Y Y  in the two groups: 

 

2 3
a b c d e

data

Y Y Y Y Y
m

+ + +
º -  (actual), 

2 3
d e a b c

j

Y Y Y Y Y
m

+ + +
º -  (pseudo). 
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Going further, obtain all possible pseudo effects, 1 , , ,Mm mK  by creating all 
possible pseudo data, and check how extreme datam  is in the distribution of 

1 , , Mm mK . For example, if datam  is the 0.013 quantile in the distribution, then the 
p-value of the test is 0.026 2 0.013= ´  for the two-sided zero effect test: despite the 
zero true effect, having the estimated effect greater than | |datam  in absolute 
magnitude is only 00026, which is the type I error probability of rejecting the correct 
null (zero effect) falsely. 

Related to this cross-sectional “placebo test” is doing the same test with a pseudo 
t ; this idea in fact applies to DD in general, not just to synthetic control, because 
such tests are often applied as part of sensitivity/robustness analysis. In the above 
CA proposition 99 example, we may set 1980t = , not 1988, and use only the left 
side of the original t  (e.g., 1970-1987) and repeat the same estimation and test 
procedure to see if a significant effect is found. If yes, something must be wrong 
because no actual treatment took place during 1970-1987. 

Randomly setting t  raises the possibility to construct a pseudo effect 
distribution differently: instead of randomly assigning subjects, maintain the same 
subjects in the two groups, but randomly assign the treatment timing for the T 
group. This is fine under the null of no effect, which makes t  changeable. We 
may make the permutation test more elaborate by going both ways: randomly assign 
subjects to either group, and then randomly select t  in the T group. This 
increases the number of pseudo effect estimates, which is advantageous if the 
number of subjects is too small for one-dimensional permutation to generate 
enough pseudo effect estimates. Permutation test is also called ‘randomization test’ 
or ‘Fisher’s exact test’. 

One problem in the permutation test is that permutation test requires 
‘exchangeability’: e.g., for ( , )a bY Y , exchangeability is 

 

1 2 1 2( , ) ( , )a b b aP Y y Y y P Y y Y y£ £ = £ £  for all 1 2( , )y y . 

 
For 1( , , )JY YK , the probability should stay the same for any permutation of 

1( , , )JY YK : e.g., 1 1 2 2 1 1 2 1( , , , ) ( , , , )J J J J JP Y y Y y Y y P Y y Y y Y y-£ £ £ = £ £ £K K  for 
all 1( , , )Jy yK . Unfortunately, this is not plausible in most synthetic control 
applications; e.g., California (CA) would not be exchangeable with Montana. Also, 
if we randomize t  within California, exchangeability requires 1( , , )TCA CAK  to 
be exchangeable, which is not plausible either. Despite this problem, in synthetic 
control approach, there seems to be no other practical way to conduct inference than 
permutation test. 
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5.3. Applications and Remarks 
 
As an empirical example of synthetic control, Abadie and Gardeazabal (2003) 

found that terrorism in Basque county reduced the per capita GDP of Basque 
county by 10 percentage point; here, other Spanish counties were used to construct 
the synthetic control. Abadie et al. (2015) examined effects of the 1990 German 
reunification using Austria, Japan, Netherlands, Switzerland and the U.S. for the 
synthetic control: the per capita GDP of Germany declined by $1600 per year, 
which is about 8% of the 1990 level. 

Bohn et al. (2014) assessed the Arizona Legal Workers Act effect on the 
proportion of the Hispanic. They used, instead of , ,J post synthetic postY Y- , 

 

, , , ,( )J post synthetic post J pre synthetic preY Y Y Y- - -  

 
which allows an intercept difference between the two groups. They showed that the 
law decreased the non-citizen Hispanic population in Arizona. 

Dupont et al. (2015) assessed the long-term effects of the Kobe earthquake in 
1995 to find that the long term effects are localized and highly heterogeneous, 
because some adjacent areas actually benefitted from the disaster while the areas 
close to the city center suffered much. This study demonstrated the importance of 
looking at detailed data at a micro level, rather than examining only aggregate data 
at a higher level, which would mask the micro-level effect heterogeneity to suggest 
almost no effect as some studies have done. 

Ando (2015) found that nuclear power facilities in Japan increased the local 
income by about 11%, Munasib and Rickman (2015) showed that shale oil and gas 
production in the U.S. had a positive effect on the local economy, but the effect was 
highly heterogeneous across different states. Xu (2017) found that allowing to 
register on election day in the U.S. instead of requiring to register before the 
election day increased voter turnout in states adopting the policy early. 

Kreif et al. (2016) assessed the effect of ‘hospital pay-for-performance’ on 
mortality in the U.K. hospitals. They found an insignificant decrease in the 
mortalities for the incentivized categories including pneumonia and acute 
myocardial infarction, but a significant increase in the non-incentivised category 
mortality. This was in sharp contrast to the conventional DD result where a 
significant decrease and an insignificant increase were seen for the incentivized and 
non-incentivised categories, respectively. In Kreif et al. (2016), there were many 
treated units, which they aggregated to a single unit to apply the synthetic control 
method, while keeping the control units without aggregation. 

As long as the goal is constructing the counterfactual untreated response for the 
treated at the post-treatment era, several issues arise in synthetic control approach 



Myoung-jae Lee ∙ Yasuyuki Sawada: Review on Difference in Differences 161

due to many restrictions. First of all, we may want to allow an intercept 0w  in the 
prediction error 1

0 1
J

J j j jZ w w Z-
=- -å , because this can only improve predicting JZ . 

Second, we may want to allow jw  to be negative because imposing 0jw ³  
can only worsen the prediction error, although the motivation to insist on 0jw ³  
(i.e., not using a control trending in the opposite direction) is sensible. 

Third, we may do without the restriction 1
1 1J

j jw-
=å =  because, again, the 

restriction can only worsen the prediction error, although the motivation to impose 
1
1 1J

j jw-
=å =  is understandable: to have a “full” individual, not more than full with 

1
1 1J

j jw-
=å > , nor less than full with 1

1 1J
j jw-
=å < . 

Fourth, instead of minimizing |T group past w- ´ (C group past)| as in JZ -
1
1

J
j j jw Z-
=å , we may want to minimize |C group future w- ´ (C group past)| wrt 

w . The pattern can be then taken to the T group past to construct the untreated T 
group future. That is, choose ŵ  minimizing the prediction error, and then 
construct the T group untreated future as ŵ ´ (T group past). 

Doudchenko and Imbens (2016) compared various approaches imposing/ 
relaxing the above constraints, and proposed penalizing a large number of positive 
weights and large magnitudes with | |j jwå , 2

j jwå  or 1[ 0]j jwå ¹ , using 
“regularization/tuning” constants. 

 
 

VI. Triple Difference (TD) and More 
 
TD appears if only a group of individuals (say, with 1G = ) among the 1Q =  

group are treated at 3t = ; call this ‘ 23TD ’ with 2,3t =  available. For example, 
1Q =  for an ethnic minority and 1G =  for women, and an education program is 

applied only to women in the ethnic minority ( 1, 1)G Q= = . This makes the TD 
treatment a triple interaction 1[ 3]D GQ t= = , in contrast to the DD treatment 

[ 3]Q t =  that is only a double interaction. TD can be generalized to quadruple 
difference (QD) and beyond. QD needs another subgroup dummy, say A , so that 
only those with 1[ 3] 1AGQ t = =  get treated (quadruple interaction)―call this 
‘ 23QD ’. 

 
6.1. Identification for TD 

 
Omitting 3

2 2 3( , , )W C X X¢ ¢ ¢ ¢º , TD with panel data is 
 

23 3 3( | 1, 1) ( | 0, 1)TD E Y G Q E Y G Qº D = = - D = =  

3 3{ ( | 1, 0) ( | 0, 0)}E Y G Q E Y G Q- D = = - D = = . 

 
Then TD identifies the effect on the treated ( 1, 1)G Q= =  at 3t = : 
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1 0
23 3 3( | 1, 1)TD E Y Y G Q= - = =  under 

0 0
3 3( | 1, 1) ( | 0, 1)E Y G Q E Y G QD = = - D = =   
0 0

3 3( | 1, 0) ( | 0, 0)E Y G Q E Y G Q= D = = - D = = . (ID )TD  

 
IDTD  is that the effect of G  on 0

3YD  is the same for 1Q =  and 0Q = . For 
an ethnic minority ( 1)Q =  education program applied only to females ( 1)G = , 
the left-hand side of IDTD  is the difference between the test score change for the 
minority females and that for the minority males, which is assumed to be the same 
as the difference between the test score change for the majority females and that for 
the majority males on the right-hand side. 

IDTD  with 1Q =  and 0Q =  on the opposite sides can be rewritten as: 
 

0 0
3 3( | 1, 1) ( | 1, 0)E Y G Q E Y G QD = = - D = =   
0 0

3 3( | 0, 1) ( | 0, 0)E Y G Q E Y G Q= D = = - D = = . (ID )TD¢  
 

Compared with the panel DD ID condition 0 0
3 3( | 1) ( | 0) 0E Y Q E Y QD = - D = = , 

IDTD¢  (i.e., IDTD ) allows this type of difference to be non-zero. Instead, IDTD¢  
requires the difference for 1G =  to be the same as the difference for 0G = . 
IDTD  is more general than IDDD  in this sense, which is, however, not exactly 
true because TD involves the extra grouping by G . As DD can be reduced to a BA 
if one BA is zero, TD can be reduced to a DD if one DD is zero. 
 
6.2. Estimation for TD 

 
Consider a panel linear model with the treatment applied from t  onwards: 
 

1[ ]it t g i q i gq i i d i i i itY G Q G Q G Q t Ub b b b b t d= + + + + £ + + ; 

 

it wW b¢  can be added to this model to control itW . If desired, gb  or qb  can be 
allowed to be time-varying (i.e., gtb  or qtb ) as the intercept tb  is. But gqb  
cannot be time-varying (i.e., no gqtb ), because the treatment effect db  cannot be 
then separated from gqtb . 

First-differencing the itY  equation renders 
 

1[ ]it t d i i itY G Q t Ub b tD = D + = +D . 
 

iG  or iQ  may appear in the form i gtG bD  or i qtQ bD , if gtb  or qtb  is used. 
As in DD, db  can be time-varying, and t  can be individual-variant. Also, one-
shot treatment 1[ ]it i iD G Q tt= =  may happen, which makes, however, little 
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difference from the lasting treatment 1[ ]i iG Q tt £  as far as the estimation goes, 
once we allow for time-varying effects with 0 1[ ]iT

a da i i iG Q t at b t-
=å = + . These 

extensions can be handled as in DD, by taking GQ  as a single qualification. 
As an empirical example, in one store ( 1)Q =  of a national chain, Chetty et al. 

(2009) displayed the sales-tax-included price below the before-tax price for 3 
categories of goods for 3 weeks (Feb. 22 to March 15, 2006) to see if showing the 
tax-inclusive price makes any difference in the patrons’ purchase behavior. The 
three categories constitute the 1G =  group, and two other stores in nearby cities 
constitute the 0Q =  group. Since the tax has to be paid at the checkout point with 
the tax rate known, the tax-inclusive price is supposed to make no difference if the 
patrons are rational. 

 
Effect of Tax-Inclusive Price on Quantity Sold (SE): No W Controlled 

 Before After BA 
1Q = : treatment category ( 1G = ) 25.17 23.87 -1.30 

control category ( 0G = ) 26.48 27.32 0.84 
             DD for 1Q =    -2.14 (0.68) 

0Q = : treatment category ( 1G = ) 27.94 28.19 0.25 
control category ( 0G = ) 30.57 30.76 0.19 

DD for 0Q =    0.06 (0.95) 
TD   -2.20 (0.59) 

 
One of their estimation results are in Table ‘Effect of Tax-Inclusive Price on 

Quantity Sold’, which shows a negative effect of tax-inclusive price (surprise?). 
Since the DD for 0Q =  in the bottom half little differs from zero, the DD for 

1Q =  would have been adequate with its effect –2.14 that differs little from the 
TD effect –2.20. 

Turning to TD estimation with RCS, with 1[ ]it iS S tº = , a RCS model for TD 
derived from the above panel linear model without id  is 

 

1 1
2

T

i t it g i q i gq i i d i i
t

Y S G Q G Q D Ub b b b b b
=

= + D + + + + +å   

where 1[ ]i i i iD G Q St= £ . 

 
Do the OLS of Y  on 2(1, , , , , , , )TS S G Q GQ DK . Extensions of this model to 
many periods, time-varying treatment, individual-varying treatment timing, etc. can 
be handled as in DD. 
 
6.3. Time-Wise Triple Difference (GDD) with Panel Data 

 
If one more pre-treatment period is available, one extra difference in TD can be 
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done time-wise instead of cross-section group-wise, as this was the case with DD: 
DD with two cross-section group-wise BA’s, and two time-wise BA’s 23 12BA BA- . 
With 1,2,3t =  (2 pre-treatment periods), “time-wise TD” (Lee 2016b) is 

 

23 12DD DD- . 

 
Since the effect db  of the DD treatment [ 3]Q t =  still remains in 23DD , this 
time-wise TD can also identify db . 

More generally, a time-wise QD is 123 23 12QD TD TDº - , and another time-wise 

QD is  
 

0123 23 12 12 01( )QD DD DD DD DDº - - -  when 0,1,2,3t =  are available. 

 
All of TD, time-wise TD and QD may be called ‘generalized DD (GDD)’, but to 
facilitate referencing, we use GDD only for time-wise TD 23 12( )DD DD-  in the 
following. 

To understand GDD better, examine Figure ‘DD versus GDD’. DD uses only 
2,3t =  to find the DD effect GI , as DD regards EG  as the untreated path of 

the T group because EG  is parallel to CF . Differently from this, GDD uses 
three periods 1, 2 and 3, and constructs the untreated path EH  for the T group as 
a straight line extension of BE ; the GDD effect is HI GI GH GI DE= - = - , 
which is nothing but 23 12DD DD- . That is, GDD takes into account the vertical 
difference DE  that is 12DD , and subtracts DE GH=  from the 23DD  effect 
GI  to come up with the GDD effect HI . 

 
[Figure 2] DD versus GDD 
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GDD has the ID condition: 
 

0 0 0 0
3 3 2 2( | 1) ( | 0) ( | 1) ( | 0)E Y Q E Y Q E Y Q E Y QD = - D = = D = - D = .  (ID )GDD  

 
The left-hand side being zero that is required in DD is relaxed; strictly speaking, 
however, this is not a relaxation because IDGDD  involves 1t =  that does not 
appear in IDDD . To better see that IDGDD  relaxes IDDD , observe 

 
0 0

0 1 1it t q i q i it t q iY Q tQ Y Qb b b b b= + + Þ D = D +  
0 0

1( | 1) ( | 0)t t qE Y Q E Y Q bÞ D = - D = = . 

 
IDDD  is violated due to 1 0qb ¹ , but GDD allows 1 0qb ¹  because both sides of 
IDGDD  equal 1qb . That is, GDD allows the G -group effect 0 1q qQ tQb b+  to 
change over time due to 1 0qb ¹ . Going further, 1234QD  allows 2

2q t Qb . 
As for GDD estimation, we can allow non-parallel paths with 1q itQb  in a panel 

model: 
 

0 1 1[ 3]it t q i q i d i i itY Q tQ Q t Ub b b b d= + + + = + + . 

 
Difference this model to get, at 3t =  and 2t = , 

 

3 3 2 1 3i q i d i iY Q Q Ub b b bD = - + + +D  and 2 2 1 1 2i q i iY Q Ub b bD = - + +D   

3 2 3 2 1 3 2( 2 )i i d i i iY Y Q U Ub b b bÞ D -D = - + + +D -D . 

 
The slope of Q  in the 3YD  equation is 1q db b+ , which becomes db  only 
under the DD assumption 1 0qb = . For GDD, db  is the slope of Q  for 3YD -

2YD  regardless of 1 0qb =  or not. For QD, db  is the slope of Q  for 3( YD -

2 2 1) ( )Y Y YD - D -D  regardless of 1 0qb =  or 2 0qb =  in 2
1 2q qtQ t Qb b+ . 

The differenced panel linear models can be estimated, which would be called 
‘fixed-effect estimation’. When 2T > , instead of differencing, we may do ‘within-
group transformation’ to remove id  by subtracting the temporally averaged model: 
with 1

. 1
T

i s isY T Y-
=º å  and 1

. 1
T

i s isU T U-
=º å , 

 

. 1 .
1 1 1

1 1 1
1[ ] 1[ ]

T T T

it i t s q i d i it i
s s s

Y Y Q t s Q t s U U
T T T

b b b b t t
= = =

æ ö æ ö
- = - + - + £ - £ + -ç ÷ ç ÷

è ø è ø
å å å  

1 .
1

1 ( 1) 1
1[ ]

2

T

t s q i d i it i
s

T T T
t Q t Q U U

T T

tb b b b t
=

+ - +æ ö ì ü ì ü= - + - + £ - + -í ý í ýç ÷
î þ î þè ø

å  

 
where both 1qb  and db  can be estimated, along with the intercept. 
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Instead of differencing or demeaning, tQ  (and 2t Q ) can be added to the model 
to explicitly allow for non-parallel paths and the level model can be estimated as 
such, which would be called ‘random-effect estimation’. The advantages/ 
disadvantages of these two approaches are analogous to those of random- versus 
fixed-effect approaches in panel data estimation: differencing has the advantage of 
alleviating endogeneity problems, but it loses time-constant regressors; the opposite 
holds for the “ tQ -inserting” approach. 

 
DD & GDD Effects of At-Home Service 

 DD GDD 
Parameter & Regressor Estimate (tv) Estimate (tv) 

0,q qb b  for Q  -0.14 (-5.44) -0.36 (-5.16) 

1qb  for tQ   0.11 (3.41) 

db  for D  0.09 (2.02) -0.11 (-1.50) 

 
As an empirical example for GDD, let D  be a new at-home service from 2013 

onwards for the severely disabled ( 1)Q =  in South Korea, and Y  be their life 
satisfaction; those with 0Q =  are disabled, but not severely. Table ‘DD & GDD 
Effects of At-Home Service’ reveals that DD based on ordered probit in Kim and 
Lee (2017) shows a significant effect 0.09db = , but GDD does not. The 
significantly positive 1 0.11qb =  in GDD indicates that the untreated responses did 
not move parallel across the two groups: the false positive DD effect 0.09 is due to 
omitting tQ . 

Kim and Lee (2017) searched for the reason why 1 0qb > , and found that a new 

disability pension started before 2013 for the severely disabled. That is, two 
treatments took place during the period of interest, which hindered finding the 
effect of the second treatment D . The moral of this empirical example is “apply 
DD to quiet periods with no other treatment than D”. 

 
 

VII. Time-Varying Qualification 
 
So far we have been assuming that Q  is time-constant, which is, however, 

restrictive because Q  is often based on time-varying variables such as income, 
wealth, number of children, or residential location. When Q  is time-varying in 
DD, one may just try to use 1[ ]it itD Q tt= £  as the treatment and proceed as usual, 
but this would be ignoring “untreated moving effects”. that can confound the 
treatment effect. When Q  changes to make an individual newly (dis-) qualified 
and then (un-) treated, a change in Y  can be due to either the Q  change or the 
D  change, which is a confounding. Here, the Y  change due to the Q  change, 
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but not due to any D  change, is an untreated moving effect. This section 
examines how to uncover the desired treatment effect when untreated moving 
effects are present. 

 
7.1. Untreated Moving Effect and Stayer Effect 

 
Suppose that a minimum wage law goes into effect and the interest is on whether 

the law decreases work hours itY  or not. There are low-paying sectors such as fast-
food industry affected by the law, and high-paying sectors such as financial industry 
not affected by the law. With 1itQ =  if person i works in a low-paying sector at 
period t , there are four groups based on 2 3( , )Q Q : 

 

3 0Q = : in high-paying at 3t =  3 1Q = : in low-paying at 3t =  

2 30, 0Q Q= = : “out-stayers” 2 30, 1Q Q= = : “in-movers” 

2 31, 0Q Q= = : “out-movers” 2 31, 1Q Q= = : “in-stayers” 
 
Suppose that the minimum wage law has no effect at all, with the in-stayers and 

out-stayers having 3 0YD = . The in-movers lost a high-paying job and thus they 
work more ( E ( 3 |YD in-movers) > 0) to make up for the lost income, and the out-
movers newly found a high-paying job to work less ( E ( 3 |YD out-movers) < 0). 
Hence, 

 

3 3( | 0) 0E Y QD = <  due to 3 3( | 1) 0E Y QD = >  due to 

3 2 3( | 0, 0) 0E Y Q QD = = =  3 2 3( | 0, 1) 0E Y Q QD = = >  

3 2 3( | 1, 0) 0E Y Q QD = = <  3 2 3( | 1, 1) 0E Y Q QD = = =  
 
This makes the conventional DD automatically positive, because 
 

‘conventional DD’ 3 3 3 3( | 1) ( | 0) 0E Y Q E Y QD = - D = > . 

 
Incidentally, Card and Krueger (1994) using fast food restaurant data reported 
positive effects on itY  of a minimum wage increase, where this kind of individual 
moves are not dealt with.  

The problem of untreated moving effect matters more in RCS where 

3 3( | 1)E Y QD =  equals ( | 1, 1) ( | 1, 0)E Y Q S E Y Q S= = - = = , because the available 
information on Q  would be only on 3Q , not on 2Q . If panel data are available, 
however, Lee and Kim (2014) showed that the problem can be avoided using 
 

‘(panel) stayer DD’: 3 2 3 3 2 3( | 1, 1) ( | 0, 0)E Y Q Q E Y Q QD = = - D = =  
1 0 0 0

3 2 2 3 3 2 2 3( | 1, 1) ( | 0, 0)E Y Y Q Q E Y Y Q Q= - = = - - = = . (7.1) 



The Korean Economic Review  Volume 36, Number 1, Winter 2020 168

The ID condition for stayer DD is 
 

0 0
3 2 3 3 2 3( | 1, 1) ( | 0, 0)E Y Q Q E Y Q QD = = = D = = . (ID )SDD  

 
Under this, stayer DD becomes the effect on the in-stayers (not on 3 1Q = ) at the post-
treatment period 3t = : 

 
1 0

3 3 2 3( | 1, 1)E Y Y Q Q- = = . 

 
One might think that the untreated moving effect problem can be avoided by 

changing the observation unit from an individual to a fixed establishment such as 
shop or region, but this does not solve the problem because the composition of 
shops or regions change as individuals move around. That is, if a fixed 
establishment is the observation unit, then its composition should be controlled in 
finding the desired treatment effect. 

 
7.2. Panel Linear Model with Source-Dependent Effect 

 
With it i itV Ud= + , a panel linear model is 
 

0
it t q it itY Q Vb b= + +  and 1 0

, 1 , 1(1 )it it s i t m i tY Y Q Qb b- -= + + - . 

 
When treated at t , the intercept shifts by sb  if 1 1tQ - = , or by mb  if 1 0tQ - = ; 
s  in sb  for ‘stayers’, and m  in mb  for ‘movers’. The treatment effect depends 
on the source 1tQ - , and we thus have a “source-dependent effect”. More generally, 
the effect may depend on the “path” 1tQ - , 2tQ - , 3tQ -  and so on. In the 0

itY  
equation, q itQb  represents an untreated moving effect. 

With 1[ 3]it itD Q t= = , the observed response is 
 

, 1 , 1{ (1 )} 1[ 3]it t s i t m i t it q it itY Q Q Q t Q Vb b b b- -= + + - × = + +  

, 1 , 11[ 3] 1[ 3](1 )t s i t it m i t it q it itt Q Q t Q Q Q Vb b b b- -= + = + = - + +   

 
where { }×  is the treatment effect. First-differencing the itY  model yields, for 

3t = , 
 

3 3 2 3 2 3 3 3(1 )i s i i m i i q i iY Q Q Q Q Q Ub b b bD = D + + - + D +D . 

 
OLS/IVE can be applied to this 3YD  model where the regressors are 
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2 3 2 3 3{1, , (1 ) , }i i i i i iQ Q Q Q QL º - D  for 3( , , , )s m qg b b b b ¢º D . 

 
Two periods give 4 groups based on 2 0,1Q =  and 3 0,1Q = , with which the 4 

parameters in g  are identified; the model is fully saturated in this sense. The 
slope qb  of 3QD  is the untreated moving effect; if Q  were time-constant, qQb  
would have dropped out of 3YD . Two treatment effects, sb  and mb , appear in 
the model for the two treated groups 2 3( 0, 1)Q Q= =  and 2 3( 1, 1)Q Q= = ; both 
have 3 1Q = . 

In the above panel “source-dependent-effect” model, assuming 2 3( | )E Q Q =

2( )E Q  and 3 3( | ) 0E U QD = , we have 
 

3 3 3 2 2 2( | 1) ( ) {1 ( )} {1 ( )}s m qE Y Q E Q E Q E Qb b b bD = = D + + - + - , 

3 3 3 2( | 0) {0 ( )}qE Y Q E Qb bD = = D + - . 

 
From this, we can see that the conventional DD is contaminated by qb  because 
 

3 3 3 3 2 2( | 1) ( | 0) ( ) {1 ( )}s m qE Y Q E Y Q E Q E Qb b bD = - D = = + - + . 

 
Even if s mb b= , still qb  remains because this becomes s qb b+ . 

As an empirical example, in January 2008, South Korea started the ‘Basic Elder 
Pension (BEP)’ for persons of age 65³ . Lee and Kim (2014) examined the effect of 
BEP on Y = ln(health care expenditure), where Q  depends on income/wealth 
being lower than a cutoff. Table ‘Conventional Panel DD’ shows that the 
conventional DD gives an 18% BEP effect along with the untreated moving effect of 
–15%: 

 
Conventional Panel DD: OLS (tv) for tYD  : 2046N =  

3Q  (treatment) 0.182 (2.44) 

3QD  (untreated moving: getting poorer) -0.150 (-2.11) 

 
In contrast, using the above source-dependent-effect model, Table ‘Stayer Panel 

DD’ shows s mb b¹  and an insignificant untreated moving effect. 
 

Stayer Panel DD: OLS (tv) for tYD  : 2046N =  

2 3Q Q  (in-stayer: getting BEP without getting poorer) 0.162 (2.10) 

2 3(1 )Q Q-  (in-mover: getting BEP while getting poorer) 0.025 (0.14) 

3QD  (untreated moving: no BEP while getting poorer) -0.088 (-0.91) 
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7.3. Overcoming Ashenfelter Dip Problem with Stayers 
 
The well-known ‘Ashenfelter (1978, p.51) dip’ for job trainings is that the T 

group experience a dip (i.e., a low 2Y  in earnings) just before getting treated: “parts 
of the observed earnings increase following training may merely be a return to a 
permanent path of earnings that was temporarily interrupted, ..., considerable ambiguity 
in untangling the effect of training from the effect of this transitory phenomenon.” Since 
the ‘dip’ is transitory by definition, the T group is bound to have a higher post-
treatment earnings 3Y  even without the treatment―an untreated moving effect of 
a sort. Stayer DD can take care of this problem as follows. 

Suppose a training is given to the unemployed: 11[ 0]t tQ Y -= = . There are the 
persistently unemployed 1 2 2 3( 0, 0) ( 1, 1)Y Y Q Q= = Û = = , and the temporarily 
unemployed 1 2 2 3( 0, 0) ( 0, 1)Y Y Q Q> = Û = = . The stayer DD overcomes the 
Ashenfelter dip problem, as the movers are either not used in the stayer DD (7.1), or 
the three effects ( sb , mb  and qb ) are separately identified in the source-
dependent-effect model. 

Essentially the same problem occurs in evaluating an education program. 
Suppose the program is applied to a low-score group 1Q =  that consists of 
permanently low-score students and temporarily low-score students. In the 
subsequent test, some of the temporarily low-score students are bound to bounce 
back, which can give a false impression that the program is effective. Using only 
stayers can avoid biases like this. 
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