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TEST FOR PARTIAL RATIONALITY

DONG SOON PARK*

We test for partial rationality of ASA-NBER surveys by examining whether par-
ticipants optimally utilized the uncertainty which is one of important informations
available at the time their forecasts were made. The ARCH-M model is employed
in order to derive the conditional variances, which can be treated as a proxy of
uncertainty in testing for partial rationality. It is shown that though direct data
or price expectations reported in ASA-NBER Business Outlook surveys are large-
ly free of bias, they are patially irrational and, of course, fully irrational relative
to conventional symmetric loss function which is seen to be a special case of asym-
metric loss functions. If the model for rationality test is specified well, a by-product
is to obtain the optimal forecasts using the survey forecasts.

I. INTRODUCTION

Brown and Maital (1981) analyzed the logical relationships among the proper-
ties that characterize rational expectations as follows. Full rationality implies that
all available information has been used in an optimal manner. The expectation
f, is said to be fully rational and is optimal in the sense that no other unbiased
predictor has small variance, if

N f!:E (Pr/¢1-l)

where f, is the predicted percentage change, p, the actual percentage change, and
$,.., the relevant information available at time t-1.

Suppose, now, that the prediction f, is incomplete, in the sense that ¢,_, is not
fully utilized. Let f, be based on S, ;, a proper subset of ¢_,. Predictions make
efficient use of this subset of information when

2) f!:E (PI/S[-I)

This property, which we shall refer to as partial rationality, means that the infor-
mation partially used-whether or not it is complete-is used efficiently. Partial ra-
tionality is a necessary condition for full rationality.

*The Bank of Korea.
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Meanwhile, a weak test of partial rationality can be constructed without know-
ing S;.;- We know that f,=f (S,_,), whereupon the condition for partial rationali-
ty implies

(3) fi=E (P/f)

f, is said to be an unbiased prediction of P, if it possesses this property. Un-
biasedness is thus a necessary condition for partial rationality.

Since it is assumed implicitly that the forecasts are fully rational, we estimate
the regression models as if the error terms follow the appropriate moving average
process, thesting for unbiasedness or partial rationality. On the other hand, for
full rationlity tests the error term should be the kth-order moving average for k-
period ahead forecast if the model is well specified.

Let the forecast be not fully rational. It means that the forecastors utilize the
past information incompletely and/or inefficiently. Then the forecast errors are
likely to be correlated with the past information. Accordingly, it is conjectured
that the error term and the past information may be correlated in the regression
model for unbiasedness or the partial rationality test, while for full rationality,
they should be uncorrelated under the good specification of model.

Meanwhile, since REH still implies uncorrelatedness of the error term with the
forecast, the least square estimates for the test of unbiasedness or partial rationality
would be consistent.! As long as we consider the consistency of coefficients only,
it is not important whether the error terms follow the appropriate moving average
process. However, we need precise analysis of the error terms for more efficient
estimate of coefficients and for tests of REH.

The American Statistical Association and the National Bureau of Economic
Research (ASA-NBER) survey is relatively rich and lengthly enough to be rigorously
analyzed, and is promising and reliable in the sense that surveys are carried out
in a consistent and scientific manner with particular attention being paid to the
models and assumptions the participants employ. This has been largely ignored
in the literature, especially in the empirical application studies, and is still surpris-
ingly little known among economists and others who might benefit from the data.

Studies by Su and Su (1975), McNees (1981), Lahiri and Teigland (1982), and
Zarnowitz (1985) have made intensive use of the ASA-NBER GNP and IPD (im-
plicit price deflator) expectations. In this article, we seek to determine whether
the IPD expectations of the ASA-NBER survey possess the property of partial
rationality.

'The correlation between the error term and the forecast depend upon whether a past information
is utilized efficiently or not. When forecasters are assumed to use a obtained information efficiently,
E(e,/f))=0. Hence, the least square estimates are consistent. Otherwise, the least square estimates will
be inconsistent.
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II. SOLUTIONS TO SERIAL CORRELATION

In a number of recently developed models, it was argued that the error term
in question is itself uncorrelated and is uncorrelated with all current and past values
of the instruments; this corresponds to the assumption that the instruments are
predetermined, which is a standard textbook assumption, so standard textbook
estimation methods apply.

It is possible that P, ; might not be observed before f, is formed. This happens
when the sampling interval is finer than the interval over which forecasts are made.
Thus the serial correlation arises from the fact that the realized values are not yet
known when the forecasting is being constructed.

For the one-period (3 months) ahead forecast error of the ASA-NBER survey
data, we can postulate a first-order moving average process if the one-period ahead
forecasting is fully rational:

4) e, 1=¢.,,+Ce

The rationale for this is as follows: the forecast for, say, April through June is
conducted in May, at time when the most recent data available would be the
preliminary estimates for the preceding quarter; since the prelimanary data are
likely to be modified, we may interpret it as a true one-period ahead forecast. Then
the last known forecast error is the one pertaining to October-December of the
last year. Thus the forecast error of the preceding quarter, ¢, is not available
when the forecast is made. Since g is not part of the available information, we
cannot rule out the possibility that E (g, ;/¢) #0. On the other hand, the forecast
error g, for k=1 is observable. Rationality thus requires E (g, , ;/g.)=0 for k=1.
Hence, we can conclude that the forecast error will be a first-order moving average.?

In general, for the k-period ahead forecasts, the corresponding forecast errors
Sik-s=Plix_s—fisx fors=0,1,..., k are not observable. Since €, €, ,..., €.
are not part of the available information, E (g ,,/€,,.) #0 or that

(5) cov {e,, & k) #10 for s=0,1,2,..., k,

We suppose the two processes {P,,} and {f,,} are jointly stationary and
ergodic. Then {¢& ,, =P, —f,.} will be covariance stationary, and we can write

(6) cov {& 1, &4ks) =(02 A for s=0,1,2, ..., k
10 for s>k

*Under the assumption that the past information is known precisely at time t when the forecasts
are made, if the prediction is optimal, the one-period ahead froecast error should be white noise, while
for the k-period ahead froecast the error term should be MA(k-1).
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The k-period ahead forecast error should follow the kth-order moving average
process.

In view of the serially correlated errors, it seems logical to base any inferences
on generalized least squares procedures. Unfortunately, since the regressors in each
case are not strictly exogenous, GLS is likely to yield inconsistent estimates. The
reason is that in effect GLS transform the model to estimate the serial correlation
in the residuals. But the transformed residuals for some particular period will be
linear combinations of the original residuals with their lagged values. These in turn
are likely to be correlated with the transformed data for the same period because
these include values of the variables in the information set.

1. Previous Estimation Methods
Brown and Maital derive the asymptotic distribution for these estimators and
show that they are efficient within a certain class. These estimates are called *‘finite-
order efficient”’ (FOE). They suggest the following model for the correct inference.
The model may be represented more compactly as

(7 Y=XB+e

where Y is the n x 1 vector of all observations on y,, X is the n X k matrix of all
observations on the x’s, and ¢ is the n x 1 vector of distributions. Under the null
hypothesis of full rationality,

8) E (ee)=Q

will satisfy (6).
Hansen (1982) has shown the asymptotic properties of f8, the OLS estimator
of f3 as follows:

© n'2 - > N ©O,V)

where V=plim (X'X/n)-t (X'RX/n) (X'X/n)-!
Then under the null hypothesis that 8 =,, the chi-square statistic is like this:
(10) a=n G-Po)' V-1 B—fo) & xt

If the extremely large values of q are observed, the null hypothesis will be rejected.

Since @ and hence V are not known, they use the consistent estimates, V=n
(X'X)-1 X'QX (X'X)-!. Thus an asymptotically appropriate test statistic for the
joint null hypothesis is

(1) G= B P 1X'X (XRX) -1 XX (B-Po)
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Thus Hansen (1982) and Cumby, Huizinga and Obstfeld (1983) derive consis-
tent estimators for models like these without a seperate, explicit ‘‘correction for
serial correlation” in the estimation process.

2. Forward Filtered Method

Hayashi and Sims (1983) suggest the Forward Filtered (FF) Method in which
we can derive the consistent and efficient estmates with a nearly ideal instrument
vector. They show that the ideal instrument vector is the linear combination of
current and lagged instrumental values and that, as the number of lagged values
of the instruments used increases, the asymptotic covariance matrix of coefficient
converges to the asymptotic covariance matrix of the optimal estimator. (This is
the reason they call their estimator ‘‘nearly efficient’’).

The estimator proposed here uses the condition that the error term is uncor-
related with all past values of the instruments because the kth-order moving
average type in the error term should be handled by moving the instrument set
forward in time.

We will describe fully the Forward Filtered Method developed by Hayashi and
Sims, and the nearly ideal instrument vector below.

We consider an equation

(12) yi=xf - &

with the identifying assumption that g, is uncorrelated with current and lagged
instruments and that the serial correlation in € does not depend on Z, i. e.

(13) E(e,e/z, 2.1, ...)=E(g &) for t>s

Let Q be the Tx T matrix E(ee’). If W is chosen so that WQW'= oI, then
We has a scalar covariance matrix. If we number the elements so their subscripts
increase from top to bottom, a conventional correction for serial correlation by
““filtering’’ corresponds to choosing W to be lower triangular. Each element of
v = We s a linear combination of current and past values of €. In general, with
such a choice of W each element of v will be correlated with current and past values
of the instrument variables.

The idea of the forward-filtered estimation is simple: Choose W not to be lower
triangular but to be upper triangular. It is well known that we can always choose
W to be upper triangular while satisfying WQW '=02], and with such a choice
of W, each element of v becomes a linear combination of current and future €’s,
thus remaining orthogonal to current and past values of instrument variables Z.

It should be now clear how we will define the forward-filtered estimator. Let
Y*=WY and X*=WX. Then the forward-filtered estimator is



68 THE KOREAN ECONOMIC REVIEW Volume 6, Number 1, Summer 1990

(14) Bpr=(X*' Z (ZN-'Z' X¥)-1 X¥' Z (Z'2)-' Z'Y*

Since Z is a vector of instruments which meets the conventional conditions for
predeterminedness in the transformed equation

(15) Y*=X*+v

there is no novelty in the asymptotic distribution theory for figg in the case where
Q is known a priori. The conventional theory tells us that the asymptotic covariance
matrix of T2 (8- is given by

(16) Plim 2T (X*'Z (Z'Z)-! Z'X*)-1

In practice, we ordinarily do not know Q, so instead of W we use an estimated
matrix, call it Q, which satisfies QRQ’=02I only approximately. In the conven-
tional model of serial correlation, where one assumes v uncorrelated with current
and past Z but allows contemporaneous correlation of Z with €, estimates of f§
based on estimates of W have a different asymptotic distribution from that of
estimates based on the true W. But as long as the estimates Q are always strictly
upper triangular, the asymptotic distribution is the same whether X* and Y* are
formed using W or Q, under reasonable regularity conditions.?

Estimates of coefficients (GLS estimates) based on the true variance-covariance
matrix is definitely superior(on the best linear unbiasedness criterion) to OLS
estimates in the general linear regression(GLR) model. But GLS estimates based
on the estimated variance-covariance matrix might not be. Monte Carlo results
reported in Griliches and Rao(1969), for example, indicate that for sample size
20, when the estimated first-order autocorrelation coefficient of the residuals is
less than one-third in absolute value, OLS estimates are more efficient than GLS
estimates. Thus the nonsphericalness of the error term must be quite severe to make
GLS estimates superior to OLS estimates.

Specifically, in the FF method there are some more reasons that fo; ¢ may be
more efficient than Bgg. Since the explanatory variable could not be strictly ex-
ogeneous and GLS is likely to yield inconsistent estimates, we nedd the instru-
ment variable vector which is uncorrelated in the limit with the transformed error
term, but which is highly correlated with the transformed explanatory variables.
The real difficulty in practice, of course, is actually finding this ideal instrument
variable vector. With only a small correlation between the transformed explanatory
variables and the instrumental variable, the sampling variances of the instrumen-
tal variable estimator may be unduly large and so we may be paying a very high
price for consistency.

3See Hayashi and Sims(1983) for the proof.
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Second, in our model the error term follows the appropriate moving average
process under the assumption of full rationality. If the presence of underutilized
information leads us to reject the hypothesis of full rational expectations, the er-
ror term may not be MA(K), but ARMA(P,Q). We know that if the error term
was not completely filtered, the partially filtered error term could be still serially
correlated. Then unfiltered estimator (o s) may be better than the partially
filtered estimator (8gg) based upon the Forward Filter method with respect to ef-
ficiency.

In summary, the necessary conditions for figr to be superior to fig s are like
this:(1) Estimates of W are always strictly upper triangular;(2) The instrument
variable vector is uncorrelated in the limit with the transformed error term but
fairly correlated with the transformed explanatory variables;(3) The error term
is completely filtered. We, in practice, are not likely to satisfy these conditions.
Specifically, it is difficult to find the ideal instrument variable vector.

-An Example

Consider the one-period ahead forecast error under the assumption of the full
rationality. If, knowing C, we filtered P, and f, through (1 + CL)~!, the resulting
filtered version would have a serially uncorrelated error, (1 +CL) lg =e,.
However, while the original (12) had error g which involved only ¢, and e _;, the
filtered error involves g _, for all non-negative S, in general. We will find that P
for s22 which were uncorrelated with g, are correlated with the filtered error e,.
Since f, is a linear combination of these lagged P’s and other variables, it too will
be correlated with e,. The usual procedure of transforming the data to eliminate
serial correlation to obtain exact or approximate GLS estimates therefore produces
inconsistent estimates in this case.

Since the backward filter (1 + CL)-! eliminates serial correlation in ¢, the for-
ward filter (1+CL-1)-! will also eliminate serial correlation. We cannot apply
OLS to the filtered equation because the filtered f, may be correlated with g, and
hence with

(17) m;=(1 + CL-1)-1g
But note that (1 + CL-1)-! will be an exponentially weighted sum of non-positive
powers of L. Thus m, depends only on ¢, ; for non-negative s. Since €, for non-
negative s is by assumption uncorrelated with f;, the unfiltered forecast, fi, is un-

correlated with m, and is eligible for use as an instrumental variable.
The equation (12) can be reformulated as follows

(18) 1+ CL-H) 1P, =fp(1 + CL-1)- 1+ f3f + m,

The resulting estimator is in the class we call FF estimates. The procedure, apply-
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ing OLS to (12) without a correction for serial correlation, but then correcting
the estimated covariance matrix of the parameter estimates for the effects of serial
correlation, it is in the class we call FOE. It has been suggested by Hansen (1982),
and Cumby, Huizinga, and Obtsfeld(1983).

Hayashi and Sims compared the relative asymptotic efficiencies of firr and Bgog
by considering whether Z or W-1'Z is likely to form a better set of instrument
variables in the forward-filtered equation. They argued that fgr is asymptotical-
ly more efficient than frog under certain conditions. If a precise model of the
determination of instrument variables is available, it should be clear that we can
ordinarily improve on both fgr and Brog.

Since any linear combination of current and lagged values of f, is uncorrelated
with all current and future values of €, any such variable is an eligible instrument
variable. The ideal instrument vector, then, is that linear combination of current
and lagged values of f, which has maximum correlation with (1 + CL-!)-!f,. The
estimator fgr with this ideal choice of f| is exactly what Hansen and Sargent (1982)
have shown to be the optimal estimator based on the uncorrelatedness of €, and
current and past f,.

Consider the following equation:

(19) f"+s =ap+ al‘f“+s_| +(12’f[+5_2+ et ap, f[+s-p for s=1
f,, may be used as the ‘‘Nearly Efficient’’ instrument variable of f, . for s>1.
Equation (18) can be reformulated using the nearly efficient instrumental variables
as follows

20 1+ CL-)- 1P, =fs(1 + CL-1)~!
+B, (F-Cl . +CH - .. + Of L) +m?,

Since we do not know C, first of all we have to estimate it. In the case of mov-
ing average models, we cannot write down the error sum of squares Zm?Z as only
a function of the observed P,. What we can do is to write down the covariance
matrix of the error term in equation (12) and assuming normality, use the max-
imum likelihood method of estimation.

An alternative procedure suggested by Box and Jenkins (1976) is the grid search
procedure. In this procedure we compute ¢, by successive substitution for each
value of C given some initial values and gy=0. We then have

(21) m; = P

m =P —pu-Cm,
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Thus successive values of m, can be generated and Zm? can be computed for each
value of C. This grid search is computed over the admissible range of values for
C (- 1<C<1) and the value that minimizes Zm? is chosen.

But since u is not given in this case, we cannot apply the Box and Jenkins method
directly. Then we regress the equation (20) by OLS, compute the residuals (m,)
by successive substitution for each value C and select the value that minimizes
Zm2,

III. TEST FOR PARTIAL RATIONALITY

In some theoretical works, notably Keynes’ General Theory, uncertainty is of
central importance to ¢conomic behavior. In quantitative models, much less im-
portance has traditionally been placed on such effects. Cast in terms of the moments
of the probability distributions generating the data, most attention has been paid
to the factors influencing the first moment, with only minimal regard for second
and higher-order moments.

Even in those instances where higher-order moments enter the analysis, they
are generally taken as constant, e.g., as in the CAPM (capital asset pricing models)
and portfolio models, and so become absorbed into the slope and intercept terms
of a regression.

There now exist a fair number of studies attempting to allow for a changing
uncertainty in economic models; a very small sample will include Venderhoff(1983),
Mascaro and Meltzer (1983), Lawrence(1983), Engle (1982) and Gylfasson(1981).

For one application, Pagan and Ullah(1986) investigate whether the assump-
tion of a zero-risk premium is consistent with the data from the foreign exchange
markets. The data for the model constitute the log of the spot rate (S,) and the
log of the 30-day forward rate, W,_,. Thus they test the Canadian-US exchange
market efficiency over the period 1970:7 to 1982: 2 using the following equation:

(22) S;=a + BW,, + d a2

Coulson and Robins(1985) considered the impact of variability in the inflation
rate upon aggregate economic activity over the period 1951:1 to 1979:4. Estimates
of the inflation surprises and risk measure, o, were taken from Engle(1983), and
Y, was regressed against X, and 62where Y, is the civilian unemployment rate and
X, the lagged values of Y,.

Engle, Lillien and Robins(1987) propose a model of the term structure that in-
corporates a risk-premium. In this case, the dependent variable is the excess holding
yield on three-and six-month Treasury Bills, while the explanatory variables are
the yield spread between three-and six-month bills and the risk-premium.

Under the conventional assumption that the uncertainty is constant, there is
no mechanism for incorporating changes in the uncertainty. It means that the uncer-
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tainty is used inefficiently in forming forecasts indicating that the forecasts will
not be fully rational.

Suppose that the uncertainty is allowed to change over time and is common
to all forecasters. With this assumption, the uncertainty can be treated as an im-
portant element of available information at time t when the forecast was made.
In order to test for partial rationality (efficient use of the uncertainty) of the ASA-
NBER survey data, we can write down a regression model

(23) pi=Bo+ il + B2 012"' &

which will satisfy 3,=0, 8, =1, =0, and E(g,/f,) =0 if f, is indeed partially ra-
tional. The ARCH-M model introduced by Engel, Lillien and Robins will be ap-
plied to the estimation of coefficients.

1. The use of uncertainty as a regressor
It is assumed that an investigator has specified a theoretical relationship of the
form

(24) y, =X B+o¥ + ¢

where the term o2 represents a conditional variance. The literature on uncertain-
ty is somewhat vague about what o2 represents. The estimation problem in (24)
is that no series on o? exists.

Suppose, however, that it was possible to construct a series w2 =02 vt (and fix-
ed sample size) or the weak property that E(w) =02 Under such circumstances,
it seems reasonable that o2 be replaced by w?in (24). The impact of any such
substitution is upon the error term, which changes from g in (24) to e, in the
following equation

(25) v, =X f+ypid+e=Xf+ypd+e+ (o6l-y)

It is not unreasonable to assume that E(x, &) =0, E(yZ%,) = 0, and this ensures that
the error term in (25) has a zero mean.

If y, possesses the strong property that w2—o2v,, it is obvious that the least-
square method applied to (25) yields consistent estimates of § and 6. However,
if it is characterized only as the weaker property that E(w3 =02, then E (yil¢)=¢
(o#—E(w9), and this will rarely be zero. Thus least-square estimates may be in-
consistent under the weak property. This suggests that great care needs to be exer-
cised in estimating d if w? is substituted for o2, Only if the strong property for y;
can be asserted, or if =0, would the regression of y, against p? be an adequate
procedure, as it is only in those circumstances that no inconsistencies in either é
or its estimated standard error would be observed.
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When y, posseses only the weak property, we can use the instrumental variable
for the consistent estimates of § and 4. An instrumental variable estimator of 8
and d is available that is both consistent and asymptotically normal. See Pagan
and Ullah(1986) for details.

An emphasis on the instrumental variables method for handling the errors-in-
variable arising when w2 replaces o? fits well with the recent tendency in
macroeconomic research to generate estimates from orthogonality conditions. Some
attention needs to be paid, however, to the determination of the instrument
variables that are orthogonal to w2 The instrument variables must be derived
from the conditioning set used in forming anticipation and, thus, should follow
the theoretical specification.

If all one was interested in was testing if d=0, any proxy for o2 would be
entered into a regression of y, against x, and the proxy and the least-square results
would be used to test if 0=0. Presumably, the power of the test depends upon
the correlation of the proxy and o2, and so demands a careful choice.

2. Estimation of Uncertainty

There are four main approaches for the estimation of w2 One is to base the
measure on a moving average of squared ‘‘errors’’ in the data. The fault of this
method is the failure to fully specify the information set underlying the construc-
tion of ¢4 and that variance changes tend to get blurred.

A second utilizes the variance of relative price movements. As we consider the
stock market, this method would be desirable. Specifically, with the identical market
assumption and no systematic factors, the desirable strong property of a good
variance measure alluded to earlier holds, and the least-square estimators are con-
sistent. It should be clear, however, that the strong property fails to hold when
markets are not identical.

The third approach constructs an estimator of the unknown variance from the
dispersion of respondents’ point forecasts in expectations surveys (e.g., Livingston
or ASA-NBER surveys). Levi and Makin(1978, 1979), Makin(1982) and Makin
and Tanzi(1982) have all used the Livingston survey data to measure the unobser-
vable market perception about expected inflation and inflationary uncertainty,
while Zarnowitz and Lambros(1987) and Lahiri, Teigland and Zaporowki(1986)
have made use of actual subjective probability distributions from ASA-NBER
surveys.

Finally, some authors explicitly parameterized o2; e.g., Hansen and Hodrick
(1980), Domowitz and Hakkio(1985), Engle(1983) and Engle, Lillien and
Robins(1987).

Suppose that for an individual uncertainty is best measured by the probability
attached to variables of single valued outcomes. This type of information has
typically not been available. The standard deviation of forecasts has been used
as proxy for individual forecaster uncertainty; the third method seems to be ap-
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propriate to the estimation of uncertainty due to inflation or interest rate fluc-
tuation.

However, the difference between a measure of uncertainty derived from a pro-
bability distribution to which values have been consciously assigned by the
forecasters and one derived from the dispersion across respondents is a distinct
one. The standard deviations derived from the probability distribution represent
a more explicit measure of uncertainty while the variance of expectations across
respondents is more accurately a measure of disagreement among forecasters.

Recently, Lahiri, Teigland and Zaporowski distinguished explicitly between the
average dispersion and the disagreement, concentrating on the individual probabili-
ty distribution about expected inflation and GNP from the ASA-NBER surveys.
They report that the standard deviations of forecasts across respondents are general-
ly smaller than mean standard deviations from probability distributions.

Using this average dispersion as a regressor in the time-series regression models,
there are at least two empirical faults. Firstly, Lahiri, Teigland and Zaporowski
examined the higher order moments, skewness and kurtosis of the probability
distribution of IPD of the ASA-NBER survey data. For the most part, the distribu-
tions exhibit an even split between negative and positive skewness, and are over-
whelmingly leptokurtic. These results contradict the usual assumption that the
distribution is normal. Secondly, since the probability distributions are discon-
tinuous over time, we cannot make use of it for the regression of time-series models.
The variance estimated from the ARCH-M model is free from at least the latter
problem. Therefore, this estimated variance may be treated as-a good proxy for
the uncertainly if the ARCH-M model is well specified.

3. Maximum Likelihood Estimation: ARCH-M Model

The ARCH model distinguishes between inflation uncertainty and variability
by concentrating on unanticipated inflation. It develops the properties of a natural
measure of uncertainty. The advantage is that the ARCH model can be used to
generate an estimated time series of K-period ahead conditional forecast variances.
For the inflation model, this can be interpreted as the uncertainty about the value
of a variable K-period in the future, conditioned on current information. The uncer-
tainty is a function of past information, and so will be treated as an available in-
formation when the forecast is made.

Suppose that the conditional variance estimated from the ARCH model
represents the true uncertainty. It can be used as a regressor in equation (23). When
a function of conditional variance is included as a regressor and so directly affects
the mean, the ARCH model is extended by the ARCH-M model.

As the forecast error is white noise, the standard ARCH-M model will work
well.* For the one-period ahead forecast of ASA-NBER survey data the estimate

“‘For example see Park(1988).
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of uncertainty may be parameterized as follow

(26) h,=62=E(e¥$..2)
= 510 + &1E (8[2_1/¢[_2) + 52812'2 + ...+ &pslz_p

where E(e2,/¢,.,) is employed instead of €2, because €2, was not fully available
at time t-2 when the forecast was made. And the estimation method of the ARCH-
M model is very similar to the ARCH model except for the uncertainty being in-
cluded as a regressor.®

As noted by Pagan and Ullah, one problem in the ARCH-M model is its
presumption of correct specification. Although it does not seem possible to ob-
tain an estimator of d that is robust to specification errors in oZ when the prefer-
red format is ARCH, it is at least possible to devise some specification tests for
the adequacy of the ARCH representation.

A test for the validity of the ARCH-M process is to compare the actual
heteroskedasticity pattern in §? with the postulated ARCH-M form. T-1 X
(ipz—hy) 4 0 under the null hypothesis that the model is adequate. Hence, using
the residuals i, and the ARCH specification for h,, we can determine how good a
representation it is by the size of T-1Z(p2 — h,). The estimated variance of
TVAT-12(p2 — hy)), under the maintained hypothesis, follows as w=2V4+
(9h,/360) Vge(9h,/38), where V2 is the estimated residual variance of W, 0’s are
the parameters in the ARCH-M specification for h, and Vg is the asymptotic
covariance matrix of T!/2(§-6). Then T!/2 w12 3(p2 — h,) follows the standard
normal distribution. See Pagan and Sabau(1986) for the proof.

This test can be simplified as follows. Observe that a necessary condition for
T-1 3(? — h) 20 is that none of the variation in {2 — h, can be explained. In
particular, if we regressed {2 — h, against a constant and h,, the two estimated
coefficients should not be far from zero under the null hypothesis.

Then, of course, the t-statistics are biased because h, is a generated regressor.
This test method is know to be especially useful if the uncertainty enters in a non-
linear way, e.g., as logh,.

IV. EMPIRICAL RESULTS

In general, most attention has been paid to the factors influencing the first mo-
ment, and even in those instances where second-order moments enter the analysis,
they are taken as constant. Thus second-order moments(uncertainty) have not been
used efficiently in forming the forecasts.

When the uncertainty(conditional variace) is allowed to change over time by
ARCH models, the uncertainty can be treated as an available past information.

sSee Park(1988) for estimation and test of the ARCH-M model.
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If uncertainty is common to all forecasters, it seems reasonable to test whether
the uncertainty was included efficiently at time t when the forecasts were made:
we may use it as a regressor in equation (23) to test for partial rationality.

As noted in the above, the estimation probiem in equation (23) is that no series
on o2 exists. Then our first job is to search for the appropriate series of uncer-
tainty. The ARCH-M model is employed in order to derive the proxy of uncer-
tainty(conditional variance). The conditional variance estimated from the ARCH-M
model is compared with mean variance or an individual variance computed from
the ASA-NBER surveys and is, generally, more fitted to individual variances than
mean variance.¢ It is, however, pointed out that the conditional variance is much
higher and far more volatile than mean variance or an individual variance.’

Meanwhile, in its standard form the ARCH-M model expresses the conditional
variance as a linear function of past variances. This argument corresponds precisely
to the Mandlebroit(1963) observation: ‘‘Large changes then to be followed by large
changes- of either sign- and small changes tend to be followed by small changes....”
Thus in the context of ARCH-M model, the unusual large variance should yield
the unusual large variance of next periods. This point is a limitaion of ARCH-M
model.

After conducting some diagnostic tests for the model selection, Park(1988) show-
ed that the model with the log of variance may be superior to that in the variance.
So our proferred model does not have h, as a determinant but logh,, and this
means that we cannot use an instrumental variable approach but are forced into
parameterization. Given this restriction it becomes necessary to test the validity
of our chosen specification for h, based upon test statistic T - 12(®2 ~ hy) sug-
gested by Pagan and Ullah. There is evidence for the presence of ARCH effect:
£,(3) is significant at the 90% level with 3 degrees of freedom.® And since the
estimates were, in fact, -.346 and .139 with t-statistics of -.307 and .309, the
parametric on the ARCH process are not rejected.

“The list of those who applied to any of the questionnaires of ASA-NBER survey includes approx-
imately 180 names. Respondents are asked to attached subjective probabilities to the potential annual
percentage changes in the GNP and GNP-implicit price deflator. The dispersion of forecasts may be
as important as the reported median expectation forecasts. It is relevant to consider the implications
for model behaviour of the dispersion of expectations about their mean value. For example, the variance
of inflationary expectations has been treated as a proxy of uncertainty about inflation. The obtained
variance may be used as an independent variable in the regression model to test for partial rationality also.

"We computed the rate of inflation at quarterly rate like Engle and Kraft(1984) and regressed the
following equation

D, =Bo+BiP1+Bopa+ BaP L+ Babis
The trend and scale of conditional variance estimated from the above equation seem to be very similar
to those of survey variance. But note that survey variance is derived from the probability distribution
of annualized survey forecasts.

® I(k)is.the Lagrange Multiplier test statistic which is asymptotically distributed Chi-square with
k degrees of freedom. The statistic ¢ (k) tests against the alternative of an unresticted Pth-order ARCH
model] and is computed using the scoring algorithm suggested by Engle(1982). The statistic (k) is
the test statistic for the validity of k restrictions on the parameters of the ARCH process.
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The least squares estimation for the one-period ahead forecast is

27) p,= .04 + .93f, + 1.28 logh, + ¢
(.06) (10.6) (2.04)
(t-statistics in parenthesis)

The maximum likelihood estimation is

28) p;= —.38 + .97f, + 1.38 logh, + ¢
(-5.9 (12.1) (2.30)
(t-statistics in parenthesis)

/§0 and ﬁ, are equal to zero and to one, respectively, but [32 is significantly
greater than zero. The last fact shows a tendency toward underestimation of in-
flation which has long been observed in a great variety of forecasts.® Thus since
there exist systematic errors(uncertainty) in the forecast, the one-period ahead
forecast should not be partially rational and, of course, not to be fully rational.

The Q-statistic for the one-period ahead forecast is 26.63, indicating that the
null hypothesis is accepted at the 90% significance level and so that the error term
follows the first-order moving average process.'® With this result, the efficient
estimates are derived from the model filtered forward with MA(1).

The least squares estimation for the FF model is

(29 P,= .39 + 95ft + .49logh, + ¢
(.60) (9.32) (1.39)
(t-statistics in parenthesis)

The maximum likelihood estimation for the FF model is
(30) p= —.04 + 96f, + .67logh, + ¢

(—.08) (12.1) (2.76)
(t-statistics in parenthesis)

The least squares estimation for the FOE model is
(31) p,= .41 + .96f, + .50logh, + ¢

(.60) (10.6) (2.04)
(t-statistics in parenthesis)

*Note that the underestimation can arise in unbiased as well as biased predictions. See Park(1988)
for details.
“The Ljung-Box Q-statistic which provides a measure of the overall serial correlation of residuals

is a Lagrange Multiplier test statistic.
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The maximum likelihood estimation for the FOE model is

(32) p= —-.04 + 97f, + .73logh, + ¢
(-0.7)  (10.8)  (2.14)
(t-statistics in parenthesis)

The maximum likelihood estimates differ only slightly from the ordinary least
squares estimaties by decreasing the size of f§; and increasing the sizes of 3, and
B,. Under REH, the coefficient of the predicted change is equal to one and the
constant term(intercept) is zero. One might expect that maximum likelihood estima-
tion for the FF and FOE models provide a better result than the least square estima-
tion and than that for the unfiltered models. These results indicate that the ARCH
estimates for filtered models(FF and FOE models) are most desirable.

V. CONCLUSIONS

For the one-period ahead forecast of ASA-NBER survey, the test does not re-
ject Hy: (By, B1) = (0, 1), indicating that the forecast is unbiased. However, in the
FF model, the maximum likelihood estimate for 3, is .67, generating t-statistic
of 2.76: the coefficient of variance is positively significant. Thus since the one-
period ahead forecast is systematically underestimated, it seems to be partially ir-
rational and, of course, fully irrational relative to symmetric loss function. Note
that in the context of asymmetric loss function, the above result may have dif-
ferent interpretation.

By the Q-statistic test for the one-period ahead forecast, the null hypothesis
that the error term follows the first-order moving average process is not rejected.
Then the efficient estimates are derived from the model filtered forward with
MAC(1). Our results show that the maximum likelihood estimation for the filtered
models(FF and FOE models) provide a better result than that for the unfiltered
models in the sense that 8, approaches zero and f§; approaches one.

One by-product is to obtain the optimal forecast by using the survey forecasts.
The Q-statistic can give a standard for model selection. As the one-period ahead
forecast does not fail to pass the Q-test at the 90% significance level, it is known
that equation (23) is well specified. With this result, the corrected survey forecast,
B.f.+ B, logh,, might be optimal relative to symmertric loss function.
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[Table] Test for Partial Rationality (ASA-NBER): One-period, 1968-86

pi=fo + Bfe + B logh? + ed)

Bo By B, R? 0,39 P
1. FF
-OLS: .39 .95 .49 .61
(.60) (9.32) (1.39)
-ARCH: 14 iteration: .02 .96 .69 .60
(.04) (10.8) (1.99)
-ARCH: Final iterations: —.04 .96 .67 .60 7.0 1.30
(-.08)  (12.05) (2.76)
II. FOE
-OLS: 41 .96 .50 .61
(.60) (10.6) (2.04)
-ARCH:I* iteration: .00 .96 .72 .61
(.00) (11.2) (2.16)
-ARCH: Final iteration: —-.04 97 .73 .61 7.1 .73
(—.07) (10.8) (2.14)
Pagan-Ullah Test: e~h = —.346 + .13%h

(—.307)  (.309)

Q Test: £(23)=26.63¢

a) h =E(e¥/$,) where g =p, —.53 -.63p, | —.23p.> —.12p, 4 +.09p ¢

b) g=¢ + .20e.,, ¢) The critical value is: x% (3)=6.25.
d) The citical value is: x?9(2)= 4.61. e) The critical value is: x?g (23)=32.0.
f) There are t-statistics in parenthesis.
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