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1. INTRODUCTION

Over the past several years, a number of studies have been published evaluating
bond portfolio immunization strategies based on the concept of duration.! Im-
munization is defined as obtaining a realized vield over a planning period which
is greater than, or equal to the promised yield to maturity. As defined originally
by Macaulay,? duration is a weighted average of the payment periods where the
weights are related to the present value of the payments in each period. As long
as the duration of a bond portfolio is equal to the planning period, risky assets
are effectively converted into a riskless asset with a known yield for any given
holding period.

In the case of default- and option-free bonds, realized yields on coupon bonds
over any holding period may differ from the yields to maturity at the same time
of purchase, either because the bonds are sold before maturity or because the
coupon payments are not fully reinvested to maturity at a yield equal to the pro-
mised yield at the time the coupon bonds were purchases. If the yield realized is
less than the yield expected (or promised) at the time of purchase, the expected
terminal wealth is not realized.

The duration of a coupon bond is always shorter than the term to maturity.
A duration based immunization investment strategy implies selling a coupon bond
before maturity. If interest rates change after the bond is purchased, the investor
is subject to two risks: (1) a price risk when the bond is sold before maturity, (2)
a coupon reinvestment risk resulting from reinvesting the coupons at interest rates
different from the yield to maturity on the bond at the time of purchase. The final
effect of these risks on realized returns varies in opposite directions and depends
on changes in interest rates. If there are increases in interest rates, the market value
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of a bond will decrease but the return from reinvestment of the coupon payments
will increase, and vice versa.

The immunization of a bond from changes in interest rates after purchase re-
quires that the price risk and coupon reinvestment risk offset each other. Therefore,
immunization duration must be the time period at which the price risk and the
coupon reinvestment risk of a bond (or bond portfolio) are opposite in direction
but equal in magnitude. Even though a duration strategy seems to provide im-
munization for a portfolio of bonds, the definition of duration that achieves im-
munization is dependent upon the nature of the random shocks that are assumed
to affect interest rates after the purchase of the portfolio.

In general, conventional immunization based on duration contains two ad hoc
assumptions. First, it assumes that there is only one state variable (or one factor)
which defines the term structure of interest rates, i.e., all interest rates are perfectly
correlated. Second, it assumes that the sensitivity of the term structure to shifts
in this state variable is unity for all maturities. There is, however, no reason to
expect a priori that all interest rates are perfectly correlated or that sensitivity is
unity for all maturities.

Duration strategy analysis does not ask whether the stochastic behavior of the
term structure implied by the state variable is consistent with equilibrium. Dura-
tion theory is most reasonably interpreted as a theory of the covariance matrix
of bond returns which rests upon the implicit assumption of a single underlying
source of uncertainty. While duration theories have tended to ignore the equilibrium
implications of their restrictions on the covariance matrix, modern theories of bond
pricing explicitly use the equilibrium conditions in arriving at their estimates of
the covariance structure.?

In recent papers, Cox, Ingersoll, and Ross (1979), Brennan and Schwartz (1983),
and others* have investigated an immunization condition when interest rates are
generated by a continuous stochastic process consistent with an equilibrium con-
dition, using either a single state variable model or two state variable model. Depen-
ding on the postulation of the interest rate process, there is a measure like duration
such that the portfolio is immunized if a proper value of this measure is met. This
assumes a continuous reorganizing of the portfolio.

In this paper, we will relax the assumptions made in duration theory and
postulate a three state variable model of bond pricing in the context of immuniza-
tion in equilibrium and extend to an n state variable model of immunization. This
paper consists of four main sections. Section Two deals with background, assump-
tions, and notations of the model. Section Three proposes and discusses the im-
munization model. Section Four extends the immunization model to an n state

Estimation of the covariance structure is not the primary objective of these theories.
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variable model and Section Five discusses some issues relevant to empirical
estimations.

II. BACKGROUND, ASSUMPTIONS, AND NOTATION

1. Background

According to modern theories of the term structure of interest rates, the value
of a default-free bond of any given maturity can be represented as a deterministic
function of n state variables, each of which is assumed to follow a continuous
stochastic diffusion process. Using arbitrage arguments, we can derive a single
partial equilibrium condition of a bond price for immunization which implies that,
in equilibrium, a partial differential equation should be satisfied by the values of
all such bonds. The differential equation involves the same number of unknown
parameters as state variables which reflect the market valuation of the risk in con-
nection with the stochastic state variables.

Several studies® have been based on either single or two state variable models.
In this study, we use a three state variable model.

Traditionally, the theory of the term structure has been cast in terms of the
relationship between the forward rates which are inherent in the term structure
and the corresponding expected future spot rates of interest. Thus, the typical ver-
sion of the expectation hypothesis postulates that forward rates are equal to ex-
pected future spot rates.® In contrast to the expectations hypothesis, the liquidity
premium hypothesis asserts that forward rates are always greater than the cor-
responding expected future spot rates by a liquidity premium sufficient to com-
pensate investors for the assumed greater capital risk inherent in longer-term bonds.
The market segmentation hypothesis can be regarded as a modification of the li-
quidity premium hypothesis to accommodate a positive or negative liquidity
premium on long-term bonds. This hypothesis assumes that long-term bonds are
not necessarily more risky than short-term bonds for investors who have long-
term planning horizons, so that the values of bonds of different maturities are
determined by the preferences of investors with different planning horizons.
Therefore, in the market segmentation hypothesis, forward rates may bear no
systematic relationship to expected future spot rates.

Now, in case of a single state variable model,’ it is assumed that, since the in-
stantaneous interest rate follows a Markov process, all that is known about future

See footnote 4 and Brennan and Schwartz (1979).
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rates is impounded in the current instantaneous interest rate. The price of a default
free bond of any maturity may be represented as a function of current instantaneous
interest rates and time. In a single state variable (factor) model, price changes in
bonds of all maturities are perfectly correlated. Such a model also implies that
bond prices do not depend on the path followed by the spot rate in reaching its
current level. This means that the whole term structure of interest rates may be
explained using only the current instantaneous interest rate, regardless of any deter-
ministic shifts in preferences over time. Clearly, this does not seem to correspond
to reality.

Brennan and Schwartz (1979, 1983) argue that they take a step toward a more
realistic approach to the pricing of bonds with different maturities by allowing
changes in the instantaneous interest rate to depend on the long-term rate of in-
terest as well as on the current instantaneous interest rate, so that the long-term
rate and the instantaneous rate follow a joint Gauss-Markov process. Their ex-
pansion of the state vaiable from one rate of interest to two is, it is contended,
to reflect the assumption that the current long-term rate of interest contains in-
formation about future values of the spot rate of interest, as is postulated in both
the expectations and the liquidity premium hypotheses.

Brennan and Schwartz take the long-term rate of interest as exogenous and try
to explain the intermediate portion of the yield curve in terms of its two extreme
state variables. Taking the two extreme values and attempting to explain the in-
termediate portion of the term structure of interest rates might lead to misspecifica-
tion problems or errors in the coefficient estimates of bond pricing. In other words,
the two extreme state variable model may not account for substantially all the varia-
tion in the term structure.

Therefore we assume that the intermediate term interest rate together with the
instantaneous and long term rates of interest determine the term structure, based
on the modified liquidity premium and market segmentation hypothesis. We assume
that intermediate forward rates always exceed the corresponding expected future
spot rates by a liquidity premium and that there is also an intermediate-term bond
market so that the prices of different maturities are determined by the preferences
of investors with different planning periods. The model developed here, viewed
simply as a model of the term structure, may be less ambitious than the single
state variable model or complicated multifactor model as in Cox, Ingersoll, and
Ross (1985a). However, it is anticipated that the major contribution of the pre-
sent model will be an alternative bond immunization strategy with manageability
in the practical sense, including option risk and default risk which are not dealt
with in conventional immunization theory based on duration analysis.®

8To incorporate default risk, it might be necessary to have the full information about the stochastic
process of the factors which affect the capital markets.
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2. Assumptions
The major assumptions of the model are as follows:

(A.1). Let 1, i, and | denote the spot (instantaneous) rate, the intermediate-term
rate, and long-term rate of interest, respectively. These rates are assumed to follow
a joint stochastic, continuous Markov process.

(A.1.1). There are no jumps in the state variables, i.e., no large instantaneous
shocks by these variables.

(A.1.2). Changes in each interest rate are partially interdependent; both the mean
and variance of the change in each interest rate depend on the value of the other
interest rates as well as its own value.

(A.2). The price of a default-free discount bond at time t of maturity T, pro-
mising $§ 1 at maturity, is assumed to be a function of the current values of the
interest rates, r, i, and 1, time, t, and maturity, T.

(A.3). The market is efficient. That is, there are no transaction costs, no taxes,
information is available to all investors simultaneously, and every investor acts
rationally (prefers more wealth to less, and uses all available information).

(A.4). Investors attempt to maximize expected returns, for a given level of risk
exposure, over a known and certain planning period.

3. Notation

From assumption (A.1), we can express changes in each interest rate as follows:

(1) dr = a,(r,i,1,t,T)dt + b,(r,i,1,t,T)dZ,
di = a,(r,i,1,t,T)dt + b,(r,1,1,t,T)dZ,
dl = ay(r,i,1,t,T)dt + bs(r,i,l,t,T)dZ,

where t and T represent calendar time and maturity, respectively, t<T, and dZ,,
i=1, 2, 3, are Wiener processes with E(dZ,) =0, dZ?=dZ?=dt, dZdZ;=odt,
where i,j =1, 2, 3, i#j; a,(®), a,(®), and a,(®) are the expected instantaneous rates
of change in the spot, intermediate-term, and long-term rate of interest, respec-
tively, and b,%(e), b,%(*), and b;?(®) are instantaneous variances in the rate of change
in the three interest rates. o is the instantaneous correlation between the unexpected
changes in the two interest rates.

The justification for assumption (A.1.2) is that the expected change in the spot
rate of interest will depend on the intermediate-term and the long-term rate of
interest, as long as the intermediate-term and the long-term rate carry informa-
tion about future values of the spot rate. Similar justifications can be applied to
the cases of the interme(}iate—term and long-term rate.

Equation (1) also implies that the unanticipated changes in the three interest
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rates are correlated. If it is assumed that the change in the instantaneous rate is
due to a change in expectations of the instantaneous rate of inflation, the same
interpretation can be made for the intermediate and long rate case.

The instantaneous covariance among interest rates, i,j=r, i, 1, is

b,; dt = E(dr)(di), b; dt =E(di)(dl), and b, dt=E(dr)(dl)

For notational convenience we denote the instantaneous covariance matrix by

@ b by by
z = {:bir b;? bil]
by, by b

which is assumed to be positive. Also for notational simplicity, denote the vector
of stochastic returns by

3) b,dz, }

bdZ = lib]dzl
bdZ,

We also denote the price of a default-free bond as postulated in assumption
(A.2) by

4) P(T) = P(,i.L,t,T)

III. THE MODEL

1. Stochastic Bond Prices

It follows from equation (1), (2) and (4), by applying Ito’s lemma,® that the
stochastic process for the price of a discount bond (zero coupon bond) is

*Suppose we have a number of stochastic processes describable by dp;/p; = a; dt + b; dZ;, i =
1, ..., n, and o;; as the correlation coefficient between the Wiener processes dZ; and dZ;. Then let F{p,,
..., Pa» t) be a function which is at least twice differentiable, which obviously, depends on the stochastic
processes. Ito’s lemma gives the rule for finding the differential of Y = F(p,, ... Py, t). Specifically,

dY = 3 (6F/ép) dp, + (SF/dt) dt
i=1
n n
+ (/) 3 3 (8F/dpip) dp; dpy,
i=1 j=

is the stochastic differential of the function F(#). The product dp;dp; is defined by dZ;dZ; = o;; dt,
ibj=1,..,nanddZdt = 0,i = 1, ..., n.
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(5) dP/P = pu(r,i,1,t,T)dt + n,(r,i,L,t, T)dZ,
+ m(r,i,Lt, TZ, + ny(r,il1t, T)dZ,

where u(r,i,1,t,T) = [P,a, + p,a, + Pia; + P, + (1/2)P,,b,?
+ (1/2)P;b;2 + (1/2)Py3b5?
+ Pi201,b:b; + Pi302:bsbs
+ Py30.:5b,b;]/P

nl(r,i,l,t,T) = Plbl/P
nz(r,i,l,t,T) = szz/P
na(r,i,L,t,T) = Pib,/P

and P, =dP/dr, P,=4dP/di, P;=dP/dl, P.=4P/dt, etc.

2. The Zero-Risk and Equilibrium Conditions

An arbitrage argument does not rely upon any particular risk attitude of in-
vestors as maintained by Cox and Ross (1976). Hence, in finding solutions to the
resulting equation for bond prices, it is expedient to assume the simplest risk at-
titude possible which is risk-neutrality. The problem may be solved for all investors
by assuming all expected instantaneous rates of return on market-traded securities
are equal. If we arbitrarily choose four bonds with distinct maturities T,, T,, T,
and T,, and combine them into a portfolio with proportion k, of maturity T,,
k, of T,, ks of Ts, and k, of T,, we can derive the equilibrium relationship bet-
ween expected returns on bonds of different maturities. The rate of return on this
portfolio, denoted by dF/F, is given by

6) dF/F = [k,u(T,) + kou(T,) + kau(T3) + kau(To)]dt
+ [kiny(Ty) + kony(T2) + kony(Ts) + kany(T.)]dZ,
+ [kna(Ty) + kono(Ty) + Kano(Ts) + kan(T.)]dZ,
+ [kina(Ty) + kons(Ty) + kens(Ts) + kena(T,))dZ,

The rate of return on this portfolio will be immunized (in a non-stochastic world)
if we choose k;, k,, k; and ks so that the coefficients of dZ;, dZ,, and dZ; in equa-
tion (6) are zero. That is, in the absence of transaction costs, this portfolio may
be continuously revised to be immunized so that at each time t the portfolio has
no instantaneous variance. Therefore,

(7 kin(T,) + kany(Ty) + kany(T5) + kany(Ty) = 0
kiny(Ty) + kona(T2) + kany(Ts) + kany(Ty) =
king(Ty) + kons(Ta) + ksns(Ts) + kany(T,)

[
o o

In order to avoid arbitrage possibilities, the rate of return on this portfolio should
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be equal to the instantaneous riskless rate of interest in equilibrium. Hence,
(8) kiu(Ty) + kau(T>) + kau(Ts) + kau(Ts) = 1

The zero risk conditions given in the system of equations (7), and the no ar-
bitrage condition (8), imply a linear risk-return relationship for discount bonds
in the four portfolio proportions. Equations (7) and (8) provide a solution for
arbitrary T,, T,, Ts, and T, if and only if for all T there exist functions 6,(r,i,l,t),
0,(r,1,1,t), and 8s(r,i,1,t), independent of maturity such that

O WT) — 1 = 6:(*)nu(T) + 6(*)nT) + 63(*)ns(T)

The term, u(T) —r, in equation (9) represents the instantaneous excess expected
rate of return on a bond of maturity T. Equation (9) obviously implies an
equilibrium relationship which restricts the relative risk premium on a portfolio
of bonds of different maturities. Therefore, the excess expected rate of return (the
instantaneous risk premium) on a bond of maturity T can be denoted as the sum
of three components. 8, can be intrepreted as the market prices of the spot in-
terest rate risk, since n,(T) is the instantaneous standard deviation of the return
on the bond of maturity T induced by unexpected changes in the spot rate of in-
terest. Similarly 6,, and 0; are the market prices of the intermediate-term, and
the long-term rate of interest risk, respectively. These market prices are determin-
ed in equilibrium as a function of investors’ preferences, endowments, and pro-
ductive opportunities.

~ 3. The Solution for Bond Price and Immunization

A partial differential equation for the price of a discount bond can be derived
from (9). If we substitute the definitions for u(®), n,, n,, and n, into (9) and rear-
range terms, we get

(10) (1/2)P,;b* + (1/2)P2;b,2 + (1/2)Pssbs®* + Py0.:bib,
+ P13023bas + Pis013bibs + Py(a, —8,by)
+ Pz(az_ezbz) + P3(a3—63b3) + P4—rP =0
If we define X as a vector of adjusted risk premiums, then
(11) 8:b,
X = [ ezbz :|
93b3

We obtain a solution for discount bond prices from the partial differential equa-
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tion (10), using equation (2), (3), and (11), together with the boundary condition,
P(r,i,I,T,T) = 1 and P>0.
The unique general solution to (10) is

(12) P(r,i,L,t,T) = E, exp [— / !Tr(v)dv - [T(I/Z) X3 X dv
- [Ix'z baz |

where E, is the expectation operator conditional upon the state variables at time
t. The third integral is defined as a stochastic integral, which is a stochastic pro-
cess with zero mean for all t<T. (see Friedman (1964) and Arnold (1974) for more
details).'® Therefore, the price of a discount bond at time t of maturity T depends
upon parameters of the stochastic processes for r, i, and | as well as the underly-
ing functions 6,(®), 0,(¢), and 0;(*). Generally, 8;, 1 = 1, 2, 3, is negative if in-
vestors value liquidity and expected returns on long-term bonds are greater than
on short-term bonds. Similarly, 6,1 = 1, 2, 3, is positive if short-term bonds are
considered riskier. The prices of regular coupon bonds can be derived by treating
each coupon as a discount bond so that a single coupon bond is a portfolio of
discount bonds.

Once we obtain bond price formula (12), it is possible for investors to be im-
munized from interest rate risk by the zero risk condition, equation (7), and the
no arbitrage condition, equation (8), if and only if we know the parameters of
the stochastic process for the state variables as well as the estimates of the risk
premium for each state variable. All we have to do is to select the portfolio of
bonds for immunization which satisfy the simultaneous equation systems (7) and
(8). Then, the value of the asset portfolio, at each instant, will be precisely equal
to that of the liabilities. Under the conditions we have assumed of continuous
trading, diffusion processes, and frictionless markets, we know that perfect im-
munization is feasible.

IV. THE GENERALIZATION

1. Assumptions and Notation

In general, we can apply the immunization strategy to the n state variable case.
The model is general in that it allows the price of a discount bond to depend on
an arbitrary number of stochastic state variables (factors) following an arbitrary
Ito process. We can incorporate into this immunization strategy factors such that
option-risk and default-risk, which might affect the price of a discount bond, with
appropriate specifications for these factors.

1%See Appendix for proof.
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Suppose the price at time t of a discount bond promising $ 1 on maturity T
is assumed to be a function of n state variables, s;, S, ..., Sy, tST.

(13) Pt,T) = P(t,T,s:8,, ..., Sp)

The state variables are assumed to follow a multivariate joint stochastic diffusion
process:

(14) ds; = a(t,T,s; ...)dt + byt,T,s; ...)}dZ, i=1, ..., n

where a;(®) is the drift component of the state variable, b;? is the instantaneous
variance rate of the state variable s;, and the dZ; is a standard Wiener process.

(19) dt ,1 =]
E(dZ; dZ;) = .
( ") [Oijdt, 1# ] ]
or,
bidt, i = j
E(ds; ds;) = ..
! bijdt, 1# J ]

We also assume that the riskless rate can be expressed as a function of the same
set (or subset) of stochastic state variables, r = r(t,s;, ...).

2. The General Bond Pricing and Immunization Conditions

The bond pricing model we are developing is very general, since the functional
form of r, a;, and b; is arbitrary, and almost any reasonable continuous specifica-
tion is possible. To develop an explicit bond pricing model, i.e., for perfect im-
munization, the functional form of r, a;, and b; must be theoretically or .
empirically specified.!?

Assume that P(1,T,s) is continuous in t and s, with continuous partial derivatives
with respect to t and s, and with continuous second partial derivatives with respect
to s. Applying Ito’s lemma, the stochastic process for the price of a discount bond is

(16) dP/P = w(e)dt + %1 ndZ,

where p(®) = {_>":1Pibi + E] El [(1/2)Pyb;] + P}/P
i= i=1j=
ni(*) = (Piby)/P

1'See Cox, Ingersoll, and Ross (1985a) for one of the more elegant theories concerning the func-
tional relation of the instantaneous spot rate to underlying economic stochastic factors.
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P; denotes for partial derivative with respect to s;, b;; for covariance between ds;
and ds; (if i=j, b;; = b;?). Thus, the rate of return on a portfolio with a propor-
tion k; of maturity T; is

n+1l n n+l
(17) dF/F = X ku(Tpdt + X jzl kin(T)dZ;
j= i= =

n+l
where 2 k; = 1
i=1

Assuming no short sales, we can always choose a portfolio with a proportion k;
of T; such that the portfolio has no risk for immunization,

n n+l
(18 2 T kn(T) =0

If capital markets are sufficiently perfect (i.e., no taxes, no transaction costs in
portfolio revision), then market equilibrium requires that the rate of return on
the portfolio should be equal to the instantaneous riskless interest rate r. Therefore,

n+1
(19) 2 ku(T) = r

Equations (18) and (19) will have a unique solution, provided that there exist func-
tions (or estimates) of 8, such that

Q0) W(T) - 1 = 3 8,6In(T)

Equation (20) implies that the instantaneous excess expected rate of return on a
bond of maturity T can be expressed as a linear combination of the adjusted risk
premium (or 6;n;).

Now, if an underlying stochastic state variable is tradable, 6; = (a;—r)/b;.
When s; is not tradable, 6; must be empirically estimated or theoretically
specified.'?

12See Ross (1976), Cox et al. (1985a) for details. The market price of risk 6;, i=0, 1, ..., n, may
depend on time and all of the underlying stochastic state variables s. In general, it is expected that
8 depends on factors such as the level of aggregate wealth and the level of investor risk premium. If
all the stochastic state variables affecting bond prices are tradable, then we could make the assump-
tion of risk neutrality to simplify the solution technique. However, the state variables affecting the
bond price are not always tradable.
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3. The General Solution for Bond Prices and Immunization
An equilibrium bond pricing equation for any pure discount bond P(t,T,s) pay-
ing $ 1 at maturity T is obtained by substituting for 4 and n;, i=1, ..., n from
(16) into (20). After rearranging,
n n n
(21) (1/2) ,Zl 'Zl Pijbij + ‘Zl (ai_eibi)Pi + P, — 1P = 0
1=1 )= 1=

With boundary condition, P(T,T,s) = 1, the solution to (21) is as follows:

(22) P(t,T,s) = Et{exp[A(T)]}

AM = [- [ ITr(v)dv ~f IT(I/Z)X’Z“ Xdv - [ jx'z-l bdZ]

where
r 91b1
0,b,
X =
- 8,b,
~ b.dZ,
b.dZ,
bdZ =
L b,dZ,

2! = inverse of the (nxn) covariance matrix 3,
where X is assumed to be full rank.

With a general bond price formula, (22), perfect immunization would be achiev-
ed if we choose a portfolio with a proportion k; of maturity T; such that equa-
tions (18) and (19) are satisfied simultaneously. For that purpose, it is assumed
that we have full information about all the relevant parameters, as well as the ap-
propriate estimates of risk premiums which satisfy equation (20) for all the state
variables. Depending on the knowledge we have about market structure, perfect
immunization may or may not be realized. Under the condition of full knowledge
of the stochastic process for the relevant state variables, we can realize perfect
immunization with no interest rate risk and, then, at every moment of time, the
value of the asset portfolio must be equal to that of the liability portfolio. In
general, if there are k factors, the immunizing portfolio must contain k + 1 bonds.
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V. EMPIRICAL APPLICATIONS
In applying the model for empirical estimation, there are several, relevant issues.

1. Alternative Stochastic Processes

Some may suggest an alternative stochastic process as follows,
(23) ds(t,s) = [e(t) + f(t)s(t)]dt + b(t,s)dZ(t)

The first order linear process in equation (23) has been termed as an Ornstein-
Uhlenbeck process, or a normal backwardation process. Assuming that f<0, future
short-term rates will asymptotically tend toward their long-term normal level of
—e/f. If f =0, then the normal backwardation process degenerates to the random
walk process such as (14) which has no normal level, and when >0, the process
becomes explosive.

While the normal backwardation process and random walk process are consis-
tent with the data,'® both models have different theoretical implications. The ran-
dom walk model implies that the spot rate, for example, may drift off to infinite
positive and negative values. As shown by Merton (1973), the possibility of an
infinite negative yield implies that extremely long-term discount bonds tend to in-
finite positive values. The normal backwardation process does not have this pro-
blem, provided that f<0. At the same time, the normal backwardation process
does not permit the transient occurrence of negative short-term rates. Since it is
assumed that a negative spot rate will never occur in reality, the normal backwar-
dation process is an inappropriate process when the short-term rate is close to zero.
Moreover, the restriction that short-term rate approach the long-term rate also
requires further justification.**

Another point to be made is that the pricing formula for a discount bond in
equation (22) is not generally valid. If we do not know the probability distribu-
tion of the exponent, A(T), the expectation in (22) cannot be evaluated. In this
case we can use numerical methods directly on the general form of partial dif-
ferential equation (21). Even if we do know the probability distribution of A(T),
it might be necessary to use numerical analysis to evaluate the expectation in (22).

The solution to equation (22) depends on the specific underlying stochastic pro-

1A different statistical test on different data may prove these processes to have merit. These are
empirical issues.

*While the long-term rate may proxy a normal long-term level for the short-term rate, there is no
justification to ensure equal coefficients on the past long-term and short-term rates.
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cess. Cox, Ingersoll, and Ross (1985a) solve (22) for the case of a univariate square
root process (i.e., b=g\/s, where g is deterministic). Dothan (1978) solves (22)
for the case of the univariate geometric random walk process (i.e., b =gs). Final-
ly, Vasicek (1977) solves (22) for the case of the normal backwardation process
(i.e., b=g).

All these arguments relate to empirical issues and the model could be modified
for empirical estimation depending on the market process assumption used. In
setting up an immunization strategy, one of the important points to be considered
in the practical sense is the problem of cost efficiency for that strategy. The ap-
plication of a particular strategy require the estimation of the underlying state
variables’ stochastic processes, which might be bothersome or subject to error.
If the strategy also requires complicated numerical methods to compute bond risk
measures, such efforts may not be justified when the objective is to immunize a
portfolio containing simple instruments.

2. Risk Premium

Brennan and Schwartz (1979), in their two state variable model, derive the
market price for long-term interest rate risk. They assume the existence of a con-
sol bond with a constant risk premium. Based on this constant long-term risk
premium, they estimate the short-term interest rate risk by empirical methods.
Therefore, they could avoid the need for deriving a risk premium function by tak-
ing, as one of the state variables, the long-term rate of interest which is inversely
proportional to an asset price, the price of the consol bond. They then argue that
the risk associated with that factor can be hedged away. Their use of the consol,
while theoretically useful, is unrealistic in the practical sense and may explain why
their empirical work shows the possibility of misspecifications or errors in their
estimation.'®

In a contemporary paper, Cox, Ingersoll, and Ross (1985a) have also constructed
models of bond pricing whith incorporate two state variables. The advantage of
their models lies in the endogeneity of the long-term rate of interest, but it is ob-
tained by introducing two risk premium functions into the practical differential
equation for bond prices, which significantly complicates the issues of empirical
estimation. They avoid the estimation problems imposed by the two risk premium
functions by the preferences of the representative investor explicitly.*® This might,
however, lead to an aggregation problem. Under explicit preference for the

*As the internal rate on a long-term bond is used as a proxy for the consol rate, market price of
risk for long-term bond estimated via a coupon bond is not the same as that estimated via a consol
bond. Furthermore, long-term government bonds are typically callable, and the impact of this provi-
sion will induce some bias in periods of time where probability of future call is positive.

‘*They set up a general equilibrium model for a representative individual.
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representative investor, the conditions for aggregation are quite restrictive. It might
impose some restriction on the family of utility functions that can be used, given
that it is necessary to estimate the parameters characterizing the utility function.

In the current model, we simply assume that the market price for the risk of
each state variable is constant and that it can be estimated empirically. In his 1976
paper, Ross shows that, if security returns are generated by a linear factor model,
then, under quite general conditions, the equilibrium excess rate of return of any
security can be represented as linear combination of the factor risk premiums. The
risk premium of the jth factor is defined as the excess expected rate of return on
a security, or portfolio, which has only the risk of the jth factor. Although our
underlying model is much more fully developed, the coefficients, 6;, are the fac-
tor risk premia in the Ross sense. In that sense, however, we should add a further
assumption to our model, as made by Ross; that is, the level of wealth does not
affect the factor risk premium.

VI. CONCLUSION

In this paper, we relaxed the assumption made in duration theory and postulated
a three state variable model of bond pricing in the context of immunization in
equilibrium and further extended to include an n state variable model of immuniza-
tion. So far, no attempts have been made to develop the concept of immunization
using a bond pricing model. Thus, it is anticipated that the major contribution
of the model developed here will be an alternative bond immunization strategy
with manageability in the practical sense, including option-risk and default-risk,
which are not dealt with in conventional immunization theory based on duration
analysis.

Based on the modern theories of the term structure of interest rates, we know
that the value of a default-free bond of any given maturity can be represented
as a deterministic function of n state variables, each of which is assumed to follow
a continuous stochastic diffusion process. Using arbitrage arguments, immuniza-
tion can be shown to require a single partial equilibrium condition on bond prices,
which implies that, in equilibrium, a partial differential equation should be satisfied
by the values of all bonds in the protfolio. The differential equation involves the
same number of unknown parameters as state variables which reflect the market
valuation of the risk in connection with the stochastic state variables.

Once we derive the stochastic bond price formula, it is possible for investors
to be immunized from interest rate risk by the zero risk condition and the no ar-
bitrage cndition in the model, if and only if, we know the parameters of the
stochastic process for the state variables as well as the estimates of the risk premium
for each state variable. All we have to do is to select the portfolio of bonds for
immunization which satisfies the simultaneous equation system. Then, the value
of the asset portfolio, at each instance, will be precisely equal to that of the
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liabilities. That is, under the assumptions of continuous trading, an explicit diffu-
sion process and an efficient markets, perfect immunization is possible. Therefore,
realized rate of return of bond portfolios will be greater than or equal to the rate
of return expected at the initial investment.

For immunization purpose, it is required that we should have full information
about all the relevant parameters for all the state variables. That is, application
of the model to the immunization strategy needs further specification of the
macroeconomic structure of the state variables. To make the things simple, ap-
plication of the model requires (1) estimation of the coefficients of the state
variables’ stochastic process, (2) estimation (or assumption) of the market prices
of risk, and (3) identification of the economic state variables related to the term
structure of interest rates.

Depending on the knowledge we have about market structure, perfect immuniza-
tion may or may not be achieved. For more reliable results, further study is
necessary on both the theoretical points and the empirical estimation in this field.
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APPENDIX
Following a similar method with Vasicek (1977) and Richard (1978), if we define
(Al) h(u) = P(r,i,1,u,T) A(u)
where

(A2) A@) = exp [~ | :'r(v) av - [ :1(1/2) X' 57 X dv
- f:]X’Z"bdZ] :

then, by applying Ito’s differential rule to the process h(u),

(A3) dh(u) = AdP + PdA + (1/2) P (dA)* + (dP) (dA)

3 3 3

A@W [(1/D) 2 X Pyby + I (a-6b)P;
i=1j= i=

+ P,—rP]dv + Au)[P,P;P) — P X' 5']bdZ

By virtue of equation (10)

(A4) dh(u) = AW)[(P; P; P) — P X' Z_,]bdZ
If we take expectations

(A5) E;[dh(u)] = 0

Therefore, h(u) is a martingale,
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(A6) Efh(u)h®] = h(t)

If we evaluate (A6) at u = T, then we get (12) by boundary condition, P(r,i,,T,T)
= 1land A(t) = 1.



