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I. INTRODUCTION

There has been intensive research on economies with ‘‘incomplete markets’’
under uncertainty and hence almost everything is exposed to us about the existence,
optimality and the structure of equilibria.” When we consider an economy with
a sequence of markets under uncertainty, what distinguishes an incomplete market
structure from a complete one is whether it is ‘‘essentially sequential’’® or not.
For instance, the economy with a complete set of Arrow’s contingent securities
is a well known case with a sequence of markets which are not essentially sequen-
tial and hence are complete.

There can be many different sources that make an economy essentially sequen-
tial. A typical one is that there is insufficient number of assets available in the
markets as instruments for transferring agent’s wealth across time and states. Once
the markets are incomplete, the qualitative aspect of the economy depends upon
the property of assets, i.e., whether they are “‘real’’ or ‘‘financial’’ assets in the
sense defined in the current literature.® Cass[4], Duffie[9] and Werner[15] examined
the existence of a competitive equilibrium with incomplete financial markets.
Balasko and Cass[3], Cass[5] and Geanakoplos and Mas-Colell[11] examined the
number and the structure of equilibrium allocations. Geanakoplos and Polemar-
chakis[12] and Younes[16] examined the optimality property of equilibrium alloca-
tions. Also there is a bunch of other works extending the arguments to production
economies with incomplete markets.

*Associate Professor, Department of Economics, Dongguk University

‘See the bulk of the literature about ‘‘Incomplete Markets’’ since Radner’s seminal paper(1972),
which is well documented in [3].

*For instance, see Hahn, ‘‘On the Notion of Equilibrium in Equilibrium in Economics’’(1974) for
the early discussion about the equilibrium concept in economies with a sequence of markets.

3This distinction is based upon whether returns are paid off in terms of units of account or in terms
of commodity bundles. But, it seems to be more appropriate to distinguish assets with ‘‘endogeneous’’
returns from those with ‘‘exogeneous’’ returns.
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On the other hand, a certain kind of restrctions on portfolio holdings can make
an economy essentially sequential even with sufficient number of assets. Then,
the economy may reveal similar properties as in the canonical economy with in-
complete markets. For instance, consider an economy with a complete set of con-
tingent securities, but with some restrictions on portfolio holdings. Since a
contingent security is not a financial asset, but also can be interpreted as a real
asset which delivers one unit of numeraire commodity in the corresponding state,*’
it may be interesting to examine the effect of those restrictions on the existence
of an equilibrium and on the set of equilibrium allocations. There is no obvious
economic explanation why people want to hold their portfolios only from a
restricted subset instead of the original set of portfolios. It may be the case that
there are some people who want to hold their portfolios only as combinations of
some ‘““mutual funds’’ formed from contingent securities. Furthermore, there are
certain reasons to consider an economy with these features.

First, it is the case in the current literature on incomplete markets that real
securities yield only nominal indeterminacy in the space of prices and financial
securities yield real indeterminacy of equilibria in the space of allocations on the
other hand. But, this dichotomy seems to be somewhat misleading because con-
tingent securities can be interpreted in both ways and there can be some kind of
real indeterminacy with a complete set of contingent securities and with some restric-
tions on their choices.

Second, since the theory of incomplete markets can be viewed as the theory
of “‘rationing’’, as was pointed out by Younes[16], we can do more exercises in
this line by imposing many different types of restrictions on portfolio choices.

Third, by choosing a certain type of restrictions on portfolio choices, we can
not only reproduce exactly the same conclusions as those from the canonical model
of incomplete financial markets, but aoso extend the argument to a broader class
of economic situations.

Finally, if we consider an ecoinomy with non-contingent securities and define
a “‘restricted participation’’ in financial markets such that different consumers may
hold their portfolios from different subsets of financial assets, then any type of
restricted participations in financial markets can be completely characterized by
the appropriate choice of restrictions on the portfolios of contingent securities
choices.

Here, people are assumed to hold their portfolios as some combinations of
mutual funds formed from contingent securities and different people may want
to hold different mutual funds. Then, the optimal choices of individuals and the
equilibria in this economy will be examined through the analysis of the role of
contingent securities prices. Also, the flexibility in choosing such restrictions will
allow us to take a close look at the ‘‘robustness’’ of a ‘‘complete market’’ hypothesis

*This has been pointed out by many people, for instance, by J. Dreze etc..
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in an economy with a sequence of markets.
II. THE MODEL

1. Overall Description of the Model

A pure exchange economy is considered in the simple context, encompassing
today(t = 0) and tomorrow(t = 1). There are a finite number of consumers indexed
by h€H={h : h=1,..,m} and a finite number of commodities in each period,
indexed by c€C={c : c=1,..,L}. There are uncertain states of nature tomorrow,
summarized by a finite set S={s : s=1,..,N}. Each consumer is endowed with
a strictly positive vector of commodities, denoted by e, = (e,(0), e(1),...,e,(N)) €
R,®M+DL and hence e=(ey,..,.e,) € (R,N+VL)m=Q, His preference under
uncertainty is represented by a utility function U,:X,, = R such that

(ul) U, is at least twice continuously differentiable.

(u2) U, is strictly increasing.

(u3) Uy is strictly quasi-concave.

(u4) the closure of indifference surfaces are contained in R, ®N+DL) where
Xh=R,N+DL {5 a closed, convex consumption set.

As instruments to facilitate consumers’ intertemporal allocations of consump-
tion goods under uncertainty, there is a complete set of contingent securities. A
state ‘‘s”’ contingent security costs n(s) units of account (dollars) in t =0 and pays
off exactly 1 unit of account only if state ‘‘s”” occurs.

2. Financial Opportunities with Restrictions on Portfolio Choices

Unlike in the original paper by Arrow{1], there is no outside money and short
sales of securities are allowed here. Furthermore, each consumer is assumed to
hold his portfolio only from subset of RN in the following sense.

. Definition 1
A mutual fund ‘“f*’ is a security composed of any fixed linear combination of
the original contingent securities with weights adding up to one.

Thus, a mutual fund f can be represented by a vector kf = (kf(1),....,kf(N)) with
2kf(s)=1. There can be at most N economically different mutual funds formed
S

from contingent securities.

Suppose that a consumer h is restricted to hold his portfolio only as combina-
tions of some mutual funds, say, as combination of mutual funds i and j. Then,
his portfolio a,=ay(1),..,a,(N)) is denoted by a, = a,iki+ a,iki for ai, ai € R.
Thus, the set of his portfolio choices ‘°A;”’ is nothing but a subspace of RN spann-
ed by ki and ki. So, if he is supposed to hold his portfolio as combinations of
M different mutual funds, A; is an M-dim subspace of RN spanned by kt,..,kM,
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Thus, financial opportunities are represented by the collection of Ay, {A,} with
possibly different linear constraints for different consumers.

Remark 1

There is no loss of generality in modelling exchanges of contingent securities
as if they were exchanged separately at the given price vector n=(n(1),...,n(N))
as long as the linear constraints on each consumer’s portfolio choices are main-
tained. This means that it is not necessary to introduce the prices of mutual funds
explicitly since the corresponding prices of mutual funds can be obtained always
from the prices of contingent securities through the straightforward relation bet-
ween them.®

3. Consumer’s Problem and the Role of Cointingent Securities Prices

Each consumer will choose(x;, a;,) as an optimal solution to the following max-
imization problem:

Maximize U, (xp)
s.t. p(0) (x4(0) - €x(0)) < -Zn(s) (un(0))

p(s) (Xu(s) - en(s)) < ax(s) (Hn(9) for s=1,...,N
and X € Xh’ ac Ah

Now, let’s take a look at consumer’s problem in detail.

The subscript ‘*h”’ will be dropped for the notational convenience. Suppose that
the constrained set of portfolio ‘‘A’’ is an M-dim subspace of RN with ISM<N.
Then, we can define an (N-M)-dim orthogonal complement oif A in the following
way:

O(A) = {vERN : vTa=0 for all a€A}

with the following (N-M) linearly independent vectors as a basis of O(A) without

loss of generality:

Vl(l),...,VN_M(l)

[V]=[ViseeosVam) = vi(M),...,vn.mM)

5There is a well defined mathematical relation between prices of mutual funds and prices of con-
tingent securities. The famous Minkowski-Farkas lemma summarizes that relation with a slight modifica-
tion. Suppose that NxM matrix [K] denotes the collection of M different mutual funds. Then,
qT=nr"[K] where n € R"i N andq € R':‘ are contingent securities and mutual funds prices respectively
without arbitrage possibilities.
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where Iy is an (N-M) x (N-M) identity matrix.
Since vT a=0 for all a€A, any a=(a(l),.,a(N)) must satisfy the following linear
restrictions:

(1) aM+1)=-— sgl vi(s) a(s), ...... , aN)= — Sgl va.m(s) a(s)

After plugging these restrictions into the budget constraints, we can derive the
firstorder conditions of consumer’s maximization:

(2) 9U(x)/ ax<(0) = p(0) pe(0)
O U(x)/ dxc(s) = u(s) pe(s) forc=1,....,L and s=1,...,N
(3) pO)m(1)-p(1) = (M + D)-uM + 1)) vi(1) +....+ @O)r(N)-u(N)) vim(1)

HE)r(M)-uM) = (u(©)-M + D-uM + 1)) vi (M)+.... + (UO)(N)-u(N))Vx.

m(M)
and (N+ 1) budget constraints with equalities.

Now, define d = (d(1),...,d(N)) = (u(1)/u(0),...,u(N)/u(0)).
Then, we’ll obtain the following relation from (3) after some manipulation:

(4) (6-m)={v] (6-m) n.m

where (d-n) = (d(1)-n(1),...,d(N)-r(N)} and (d-my.v = M + 1)-n (M + 1),..., d(N})-
n(N)). Obviously (d-m)€O(A), implying that d is an element of a translate of O(A),
i.e., d€T (A:m)=0(A) + {n} for some given neRY , .

Since d must be a strictly positive vector at the optimal solution, we can define
the following O(A:n) as the set of admissible d:

O(Am)={d €ERY, :d=v+n for vEO(A) and some n € RN, }

Now, let (x(p,n), a(p,n), u(p,n)) be the unique optimal solution of the above
f.o.c. relative to (p,m).®” They are smooth functions of (p,n) under the assump-
tions on the utility function.

Remark 2

When financial opportunities are restricted to the subspace of RN, we can
restrict our attention to the following set of commodities and securities prices
without losing anything in keeping track on the behavior of consumption demands

°See[2] for the behavior of the optimal solution with several budget constraints in detail.
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due to the variant version of the homogenity property of the demand functions.”

P={pERMIL: Zpe (0) +Z ZIpe (s)=1}
Qm = {n€RY, : In()=1}

Notice that Q(n) is the set of normalized ‘‘no arbitrage’’ securities prices when
financial opportunities are summarized by {A;}.

Now, suppose that some n € Q(n) is fixed exogeneously. Then, it is convenient
to define the following set for the later discussion:

Oy (Am)={ 0o ERN_ : o=(1/§ 4(s)) (d(1),...,d(N)) for 6 € O (A:m)}

Lemma 1
On (A:m) is an (N-M)-dim submanifold of Q(n) for any n € Q(n) when A is
an M-dim subspace of RN.

Proof

First, O(A:n) is an (N-M)-dim submanifold of RY , as the intersection of T(A:n)
and RY , . Then, since the mapping ¢ : O(A:m) = Oy (A:n) is diffeomorphic,
On (A:m) is also an (N-M)-dim submanifold of RY , . Moreover, Oy (A: m) is a
subset of Q(n) by construction. Q.E.D.

Remark 3
It is not difficult to see that GUQ( , Opn (A:m)=Q(n). We can call 0 € Opn(A:m)

as a “‘renormalized’’ LM vector. There is no loss of generality in introducing this
renormalization because all adjustments can be made in terms of commodity prices
p for keeping track on the behavior of consumption demands.

III. REAL INDETERMINACY OF FINANCIAL EQUILIBRIA

1. Admissible Case with Variable Contingent Securities Prices

There is no problem in the existence of a financial equilibrium no matter what
type of { Ay} is given simply because the aggregate excess demand functions for
commodities are well behaved as in the Arrow-Debreu economy. This is also true
even when n is fixed exogeneously. But we have no make some restrictions on the
collection of Ay, {Ay} for the discussion about the indeterminacy of financial
equilibria.

"Many different normalization conventions can be utilized. So, different convention will be utilized
if necessary without loss of generality.
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Definition 2
Financial opportunities summerized by { A;} are called ‘‘admissible’’ if there
is always some consumer, say, h=1 such that hijl Ay € A, where h§1 Apis a

direct sum of subspaces.
First, we will restrict our attention to this admissible cass.

Definition 3
A 4-tuple(p,n,x,a) is a Financial Equilibrium(FE) rlative to {A;} if
i) (Xp, ay) is an optimal solution to consumer’s maxinization problem relative to
(p,n) and
i) }}:_ Xp<(s) = % ehe(s) for s=0,1,..,N ¢=1,., L

% ap(s)=0 for s=1,..,N

For the further discussion, let’s first establish the equivalence between the follow-
ing two representations of consumers’ maximization problems:

0" Maximize Uy, (xp)
s-t. p(0) (Xp (0)-en(0)<-Z 1(s) ax(s)
p(s) (Xp(s)-en(s)) Sap(s) fors=1,..., N
and x, € x;,, a, € A, for h=1,...,m
(II) Maximize U, (x;)
s.t. p(0) (x,(0)-€1(0)) + X m(s) P(s) (x,(s)-€, (s)) <O

and x; € X,

Maximize Up(X;)

s.t. p(0) (xp(0) - ex(ON< - >SZ n(s) a, (s)

p(s) (xu(s)-en(s))< ay(s) fors=1,...,.N
and x,€ X,, a, € A, for h=2,...,m

This is nothing but the application of the well known isomorphism between
two representations of consumers’ maximization used by Cass[5] and also by Duffie
and Shafer[10)]

Lemma 2
If (p,n,x,a) is a FE in (II), then it is also a FE in (I} with
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Proof

This is obvious simply because (x;,a,) defined here is also feasible and optimal
relative to (p,n) in (I). Q.E.D
Lemma 3

If (p,m,x,a) is a FE in (I), then there is (p’,n’, a') supporting x as a FE allocation
in(11).

Proof
First, set (p’,n',a’) as follows:
p'=(p(0), Z &) p (1) & SNPP(N)), n'=0 € Oy (Apim) and ay'=

2 41(s)) ay for h22 where n’=o, is derived uniquely by the normalization of
S

the optimal LM vector d, supporting consumer 1’s optimal solution(x;, a,) relative
to (p,m).

Then, it can be seen easily that x; and (xy, a"), for h>2, are feasible and also
optimal relative to (p’, n) in (II) and hence (p’,n',x,a’) is a FE in (II). Q.E.D

So, there is no loss of generality in discussing the indeterminacy of equilibria
in terms of (I11). Now, the question is how the indeterminacy of financial equilibria
depends upon financial opportunities represented by {A,}. Since financial
markets clear always whenever commodities clear, we can restrict our attention
to the behavior of the aggregate excess demand functions for commodities.

Let fi: PXQ (m) x RO+ DL — RN+IL denote the smooth demand function
such that f, (p,me,)=x, for h=2,...,m. Consumer 1’s demand function is
denoted by g;: PxQ (m) X RNy DL — RN+ L such that g, (p,n,e;) =X,.

Then, let’s define the aggregate excess demand function Z:PxQnxQ —
R(N+DL-1 such that: Z(p,n,e)=g, (p,m,e;) + héz fy, (p,m,en) ~ h%l e, with the

1, commodity in t =0 dropped out by the analogue of Walras’ law, Let’s define
the following equilibrium manifold:
E={(p,n,e) EN#Q [M)xQ: Z (p,m,e)=0}.

Lemma 4
E is an {(N-1)+ (N + 1)Lm]-dim submanifold of PxQ(n)xR.

Proof

As in the standard regular economy, it is easy to see that rank
{0Z(p,n,e)/ de|=rank [d(g,(p,m,e))-€,)/ de;]=(N+1)L-1. Therefore, the Jaco-
bian of the derivative mapping DZ(p,n,e) evaluated at any (p,n,e) has a maximal
rank and hence 0 is a regular value of the mapping Z. So, E=Z-1(0) is an
[(N-1)+ (N + 1)Lm]-dim manifold by the preimage theorem. Q.E.D.
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Now, define a mapping M:E—~>Q(n)xR as a restriction of the natural projection
to E. Since I' is a smooth mapping between manifolds of the same dimension, which
is also surjective and proper, the set of regular values of [ is an open and dense
subset of Q(n)xQ by Sard’s Theorem. The surjectivity of [ is obvious because the
equilibrium price correspondence Ep: Q(n)x2 —P such that

E,(n,e)= {pEP: Z(p,n,e)=0} is closed since Z is continuous.

The properness of I is also obvious with smooth demand functions and the
behavior of consumer I on the boundary of P in particular (see [3] for the ex-
haustive analysis of these properties or [8] of which argument can be extended
to the case here straightforwardly).

Definition 4

V is an open and dense subset of Q(rn)xR, composed of regular values of the
mapping I.

The indeterminacy in this economy with an arbitrary admissible { Ay} depends
upon whether we can establish a well defined mapping(‘‘diffeomorphism’’ for in-
stance) between a subset of V(and hence a subset of PxQ(n)) and a subset of
equilibrium allocations when “‘¢”’ is given. First, let’s consider the following two
‘““polar’’ cases:

Case 1: Uniform restriction on A,

A, =A for h € H where ““A”’ is an M-dim subspace of RN spanned by M dif-
ferent mutual funds k!,..,kM. That is, all consumers are uniformly restricited to
hold their portfolios only as some combinations of M mutual funds formed from
contingent securities. Then, it is not surprising to see that this economy with
{An}={A} is exactly isomorphic to the economy with incomplete financial
markets where ‘““M”’ non-contingent securities are traded without any restrictions.

Thus, the already well known real indeterminacy with incomplete financial
markets can be exactly reproduced in this framework.

For instance, if n is supposed to be determined in financial markets, then it
equivalent to the case examined by Geanakoplos and Mas-Colell [11] where the
set of equilibrium allocations was shown to contain an (N-1)-dim manifold when
returns from financial assets are fixed, but assets prices are variables.

Case 2: No restriction on A

Ap=RN for h € H. This is the case with a complete set of contingent securities
and without restrictions. Thus, there is only nominal indeterminacy in the space
of normalized prices, corresponding to every n € Q(n).

Next, it may not be easy for us to draw a systematic conclusion about the in-
determinacy of financial equilibria relative to any arbitrary admissible { A, }. But,
there may be some class of { A}, besides those special cases mentioned previous-
ly, that yields real indeterminacy of equilibria with the dimensional property.
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For this, let’s define the set of equilibrium allocations when some {A;} and

6,99

e’ are given:

X(e)= {x€ Q: there is (p,n,e) € I'-! (n, €) such that
X=(gl (p’nye])’ fZ (p’nsCZ)v--afm (p,n’em)) for (TI,C) € {Q(n)x{e}}ﬂV}
Here, it is convenient for us to examine the case without restrictions, i.e.,
A, =RN for all h.

Definition 5

A FE(p,n,x,a) with A;,=RN for all h is called a Walrasian Equilibrium (WE),
which is always Pareto optimal.

Since there is only nominal indeterminacy in the space of prices and in port-
folio choices, let (p*, n*, x*, a*) denote a WE corresponding to n* =(1/N,..,1/N)
€ Q(n) in particular. Then, there exists (p,n,a), supporting x* as a WE, with the
following properties:

p=(p*0), (1I/Nn(1))p*(1),..,(1/Nrn(N))p*(N)), n € Q(n) and

ap = ((1/Nn(1)) ap*(1),.., (1/Na(N)a,* (N)) for h € H.

Now, let’s define Ay(n) as follows:

Ay(m) = {a, € RN: a, =((1/Nnr (1)) ap*(1) ,..., (1/Nu(N)) a,*(N)) for n € Q(n) }

Obviously, Ay(n) is an (N-1)-dim submanifold of RN since the mapping from
Q(m) to Ay(n) is diffeomorphic. Notice that A, (n) will be defined for each Pareto
optimal allocation if there are a finite number of WE allocations. Notice also that
Ap(n) is independent of the choice of n* from Q(n).

Lemma 5
Suppose that(p,n,x,a) is a FE relative to any admissible {A,}. Then, it is
Pareto optimal if and only if a, € Ay(n) for h € H.

Proof
This is obvious from the construction of Ay(n). Q.E.D.

Next, financial opportunities are assumed to satisfy the following additional
condition.
(al) there is a non-empty subset H, C H such that dim(A;)<N for h € H..
Now, define the following set:
V,={(n,e) € V: there is (p,n,e) € -1 (n,e) such that x(p,n,e) is not Pareto
optimal }

Lemma 6
If {Ah} satisfies (al), then V| is an open and dense subset of V and hence of

Q(m)xQ.
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Proof

1) openness: Suppose that x (p,n,¢) is not Pareto optimal relative to (n,e) €
V. This implies that there is some h € H, such that a, € A;NA(n) and also d, =m.
Since a; and d, are continuous with respect to (m,e), there is an open
neighborhood V(r,e) of (n,e) in V such that x(p’,n’,e’) is not Pareto optimal relative
to (p/, n',eh €Tr-1(n', ') for (n', &) € V (mn,e).

2) denseness: Since Ay(n) is constructed after the collinearity in ay, is eliminated
by the normalization of n € Q(n), A,NA,(r) must be at most a closed and
nowhere dense subset of A, for h € H;. Now, suppose that x(p,n,e) is a Pareto
optimal allocation relative to (p,n,e) € - (n,e) for (n,e) € V. Then, we can pick
(n', e) € V such that [|(r’, e) - (m,e)| < € for some arbitrary small e>0 and a,,’ &
ApNAy(m) for some h € H, where {a;'} is the coliection of equilibrium portfolios
supporting x(p’,n’,e) relative to (p',n',e) € -1 (n/, e).

Then, x (p’,n’,e) is not Pareto optimal by Lemma 5. Q.E.D.

Next, let’s define the following set:

Q;={e € Q: there is n € Q(n) such that (n, e) € V,}

Then, it is obvious that Q, is an open and dense subset of Q as a cross section
of V, from Lemma 6. Now, pick an open subset V, around (n,e) € V,. Since I'
: E—=~Q (m)xQ is a smooth mapping between manifolds of the same dimension and
is also proper, I'-1 (n,e) is a finite set of dimension O for every (rn, ) € V,. Then,
there are a finite number of disjoint open (relative to E) subsets W,...,W, of E,
containing each point (p,n,e) € I'-! (n,e) such that I maps each W;, j=1,. .k, dif-
feomorphically on V, by the stack of record theorem. That is, the mapping I
restricted to W; and V, is a diffeomorphism.

Next, define the following sets:

G={Q(mx{e}} NV,

V(p,m) = {(p,n)€ PxQ(n): there is (p,m,e) € ! (G)}
which is also an (N-1)-dim submanifold of PxQ(n) by the restriction of the local
diffeomorphism -1 to G.

Then, - 1(G)=V(p,mx{e} Wi

Since x(p,n,e) is Pareto optimal relative to (n,e) € V if and only if

oy (p,m,ey) =n for all h € H, the following variant version of V; and , is useful
for the discussion.

V,y={(n,e) €EV: there is (p,n,e) € -1 (n,e) such that

i (p,m,g) - m=v; € O (A)\{0} for some j € H}

Q,={e € Q: there is n € Q(n) such that (n,e) € V,}
Notice that V, is a subset of V.

Lemma 7
V, is an open and dense subset of V and hence of Q(m)x<R.
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Proof

The openness of V, follows from the fact that d; (and hence v;) is continuous
with respect to (p,m,e). For the denseness, suppose that (m,e) € V, but &€ V,.
Let x=(x,...,Xm) be an equilibrium allocation relative to (p,n,e) € I -1 (n,e).
Now, define x'=(xy,.., Xj.1, X, Xj 4 1,-.» Xm) such that ||x;"-x;|| < e for any arbitrary
small ¢ >0 and x;' together with a;’ € A; and ;' is an opimal solution to the equa-
tions of the first order conditins (2) and (3) when M=N-1 relative to (p,n,e;")
where ¢j'=¢;+ (x;-x;) and &;'= (;' (1)/44'(0),...,1;'(N)/p;(0)) =n +v;’ for v;' €
O(A)\ {0}. Notice that such (x;', a;', ;") exists always due to the assumption (u3)
on the utibility function and hence due to the non-signularity of the Jacobian of
the system of equations (2) and (3). Now, pick (n’, e) € V such that n'=n and
e’=e+(x"-x), which implies that |[(n’, e)-(n,e)|| = ||x;"-x;|| < & for any £ >0. Then,
x'is an equilibrium allocation relative to (p,m,e”’) € ['-1 (n,e’) and hence (n,e') €
V.. So, V, is open and dense in V.

Proposition 1

If A;=RN and there is some j € H such that dim (A;)= N-1 with the origin
as the only element of O(A;) containing 0 as its corrdinate, then X(e) contains an
(N-1)-parameter family of equilibrium allocations for every ¢ € @, no matter
which Ay, is given to h € H\{1,J}.

Proof

Pick any arbitrary (p,n), (p’,n") € V(p,n) supporting x and x' respectively. Then,
it is sufficient to show that x#x’.

Suppose not, i.e., x=x"'. Then, we’ll get the following relations from the f.o.c.
evaluated at x,=x,,’ after using the normalization

pl(0)=pl(0)'=1:
(5) p(0)=p(0)’, u(0)', n(s)p(s)=m(s)'p(s)’ for h=1
(6) pj(0) =p;(0), d;(s)p(s) =di(s)'p(s)’ for h=j
(7) Hence, dj(s)' = (n(s)'/n(s))d;(s) for s=1,..,N from (5),(6)
Then, (d;"-n) = (vi(1)',...,v;(N))
=(d;(1)-n(1)’,..., d;(N)"-m(N)")
=((n(1) /n(1))d(1)-n(1)',..., ((N)'/n(N))d;(N) - n(N)")
=((n(1)"/n(1))v; (1),..., (M(N)/a(N))v; (N)) € O(A))
(8) from (7) and (dj--) = (v; (1),..., Vj(N)) € O(A)
Obviously, v;#0 and v;'’#0 by the construction of V(p,n).
Now, from(8) and the property of O(A;), it must be the case that there is some
scalar k#0 such that v;"=k-v;. Then, it follows immediately that

9 M +...+7'MN)=k(z(D+...+n(N)=k =1
This implies that v;’=v; and hence n’=n. Then, p=p’ from (5).
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Hence(p,m) =(p’,n’), which is a contradiction. Thus, there is a 1-to-1 cor-
respondence between V(p,n) and the suitably defined subset of X(e).

Let X(e) denote such a subset of X(e). Then, the mapping F,:V(p,n)~>X(e) is
continuously differentiable by the implicit function theorem, 1-to-1 and onto by
construction. Therefore, X(e) contains an (N-1)-parameter family of equilibrium
allocations for every e € Q,. Q.E.D.

Next, a broader class of admissible {A;} can be considered.

Although it can be conjectured that almost any admissible {A,} would be
associated with a non-trivial real indeterminacy of equilibria, we must be precise
in characterizing the conditions under which there is a dimensional real indeter-
minacy. For this, the assumptions on {A,} are modified a little bit in the follow-
ing way:

(a2) {Ay} is admissible with dim(A,)=M shch that I<SM<N.

(@3) {Ay} is diverse enough so that there is a subset of consumers

Hy € H\{1} with A, = heZH“Ah and A#A; for some i,j € Hy with

#(Hp) =M.

(a4) m>M

We can set Hy; ={2,..,M+ 1} without loss of generality.

Now, it is easy to see that all previous arguments about the equilibrium manifold
and the projection mapping hold for the case here. So, E and the mapping [ are
defined as before together with an open and dense subset V of Q(n)x<2 as the set
of regular values of T.

Next, define the following set V;:

V3= {(n,e) € V: there is (p,n,e) € [~ !(n,e) such that rank ([a]y) =M} where
{a]y is an NxM matrix of equilibrium portfolios relative to (p,n,e) € I' - 1(m,e) such
that a,=(ay(1),...,a,(N)) is the h; column vector for h € Hy and
a(s)=(ay(s),...,apm 4 1(s)) is the s, row with a(s)#0 for s=1,..,N.

Lemma 8
V; is an open and dense subset of V and hence of Q(n)x<2.

Proof

The straightforward application of the steps in [5] is sufficient for the proof
here. This application is possible due to the assumption

(a2) - (a4). See p.18-20 of (5] for the detail. Q.E.D.

So, V(p.n) is defined again as an (N-1)-dim submanifold of PxQ(n) for every
e € @; defined in line with Q,, R, by the stack of record theorem as before with
rank (fa]y)=M for every(p,n) € V(p,n). X(e) is also defined as the set of
equilibrium allocations relative to e € Q;.
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Lemma 9
Let Y({a]y) denote an M-dim subspace of RN, spanned by column vectors of
[a]m (.e., Y([a]y) = heZH Ay) and O ([a]y) denote its orthogonal complement.
M

Then, Y([k/g] [a]m) N O({a]y)={0} where [k/g] is a diagonal matrix with
(k(1)/g(1),...,k(N)/g(N)) >> 0 on the main diagonal.

Proof

Suppose not. Then, there is some b'ERM such that [k/g] [a]y. b'E O([a]y) with
b'#0. Then, ([k/g] [a]m.b)T y=0 for every y € Y ([a]y) by the orthogonality
where y=[a]y. b for b € RM. So, pick some y’'=[a]yb’. Then, ([k/g]
[a]m-b )Ty =([k/g] [a]y-b)T [a]pb’ = ([a]mb")T [k/g]([a]pb ) >0, which is is a con-
tradiction. Q.E.D.

Lemma 10
Y([aJm)=Y([k/g] [a]y) if and only if k=g.

Proof

First, every column vector in [k/g] {a]y can be decomposed as follows:
a,+[k/g)—1llas,...... a4 + ((k/g]-1]am 4

where [(k/g)-1]=[k/g]-Iy and 1 € RN

Since the sufficiency part is obvious, let’s consider the necessity part. Suppose
that Y([a]pm)=Y([k/g] [a]m), but k#g.

Then, [k/gla,-a, =[(k/g)-1]a, € Y([k/g] N O ([a]M) for h € Hy, by the or-
thogonal decomposition. This implies that [(k/g)-1]a, =0 for all h € Hy; by Lem-
ma 9. Then, k =g by the property of [a]y, which is a contradiction. Q.E.D.

Proposition 2
If {A,} satisfies (a2)-(a4), then X(e) contains an (N-1)-parameter family of
equilibrium allocations for every e € Q5.

Proof

Let x and x' denote equilibrium allocations relative to (p,n), (p’,n") € V(p,n).
Suppose that x =x'. Then, from the f.o.c. of consumer’s maximization, the follow-
ing relation must hold:

On(s)P(s) = dn(s) (pX(s),---, PL(S)) =0OK(s)' (P'(s)’, ... , PL(s)) = Sh(s)’ p(s)’
(10) which implies that dy(s)'/dy(s) = p(s)/pc(s)’

for h € Hy, s=1,..,Nand c=1,...,L
(1) Also, from (10) and x,=x;’, [a]y=[p</pc] [a']m

where [a]y, [@']y are matrices of equilibrium portfolios supporting xy, Xy’ for h
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€ Hy, and [pe/pe’] is a diagonal matrix with (pe/pe’) = (pe(1)/pe(1)’,....,pe(N)/p(
N)") on the main diagonal.

(12) Thus, Y({alw=Y((p</p°] [aTw=Y([alm)=A1= 2 A,

(13) Lemma 10 and (12) implies that p=p' and d,,=d,' for h € Hy

Next, n#n' from (13) since (p,n)#(p’,n’) by assumption. This implies that
T(Ap:n) N T(AL:n") =@ for at least some h € Hy, because they are parallel to each
other. This is a contradiction to 4, =4y’ for at least some h € Hy,. Therefore,
n=n’and hence (p,n)=(p’,n"), which is also a contradiction. Thus, the mapping such
that F,:V(p,m)—~X(e) with F,(V(p,m)) = X(e) is is continuously differentiable, I-to-1
and onto by construction. Therefore, X(e) contains an (N-1)-parameter family of
equilibrium allocations for every e € Q,. Q.E.D.

The following example will be useful to understand the above proposition.

[Example 1]

There are 3 consumers, h=1,2,3. there is only one commodity in each period
and there are 3 uncertain states in period 1, s=a,8,7

Each consumer’s endowment, denoted by e, =(e,(0), ey(a), en(B), en(1)), is
assumed to satisfy that:

there is no ““t”” € R such that DUj(e) = t.DUj(e)) for any i,j

Financial opportunities are assumed to be given as follows:

Ay={a; € R3 a;=b,-v+byu for some by, by € R} where two vectors
v ={(v(a), v(f), v(1)) and u=(u(a), u(fB), u(r)) are linearly independent

A, ={a,ER3 a,=k,-v for some k, € R}
Ay ={a;€ER? a;=kj-u for some k3 € R}

which implies that A=A, + A;.

Also, V(p,n) is defined as a 2-dimensional submanifold here.

Now, let(p,n,x,a) and (p’,n’,x’,a’) be FE relative to (p,n), (p’,n) € V(p,n). Also,
suppose that x=x'. From the f.o.c. of consumer’s maximization, the following
relationship must hold (we can set p(o)=p(o)'=1 without loss of generality):

(14) puh(0) =u(0)’, dy(s) p (s)=du(s)'p(s)’ and dp(s) an(s) = dx(s) an(s)’
for h=1,23 and s=a,B,7
(15) From (14), a,(s) = (Sx(s)'/dp(s)) an(s)’ = (p(s)/p(s)") an(s)'

We can express (15) by using the matrix notation as follows:
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a(a) az(a) p(a)/p(a)’ 0 0 ay(a)' as(a)’
[az(ﬁ) az(ﬁ)J = { 0 p(B)/p(B)’ 0 Maz(ﬁ)’ a3(ﬁ),J
a)(1)  ay(1) 0 0 p(1)/p(r)’iLax (1)’ as(1)’

or simply [a],=[p/p'] [a'],

Notice that rank ([a],)=rank([a’],)=2 by the property of A, and Aj;.

Thus, Y([a])=Y([p/p'] [a10=Y([2aT)=Y(AD=Y(A, + Aj).

(16) So, p=p’ by Lemma 10 and hence 4, =4’ from(14)

Since 4, € T(Ay:n) and d,' € T(A:n") and T(AL:m)NT(A:n) =@ for at least
some h(here h=1 in particular) if n#n’, this is a contradiction to (16). Hence,
(p,m)=(p’,n’), which is also a contradiction.

Thus, x#x’. Therefore, there is a 2-parameter family of equilibrium allocations
corresponding to each(p,n) € V(p,n).

Remark 3

Proposition 2 is indeed the generalization of the main results in Cass and
Balasko{3] and Geanakoplos and Mas-Colell {11] because Lemma 8, 9, 10 and
Proposition 2 hold when {A,} is reduced to a simple one such that A, =A for
h € H where A is an M-dim subspace of RN,

2. Admissible Case with Fixed Contingent Securities Prices

We will consider the case with fixed n* € Q(n) in this section. Suppose that
(p,m*,x,a) is a FE in (I) relative to some n* € Q(n). O(A,:n*) and O (A, :n*) are
defined as before.

Lemma 11
hQH O, (Ap:m*) is non-empty for any n* € Q(n) relative to any admissible.

Proof
This is also obvious simply because n* is always in On(Ay:n*) for all h € H.
Therefore, hQH On(AL:*) =2 for n* € Q(n). Q.E.D.

Let T(n*)= hQ{ On(Ap:n*). Then, T(n*)=O0y (A;:n*) by the property of

an admissible { A, }. Notice that T(n*) is always a submanifold of Q(r) regardiess
of the choice of {A;} and n*.

Lemma 12
If (p’,n’,x’,a’) is a FE in (II) relative to some n=o0 € T(n), then there exists a
FE (p,n*,x,a) in (I) such that:
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p=(p(0)’, (1/§ dsPp1)s..., (1728 (s)p(N)") and x, =Xy,
ah=(1/§d(s))ah’ for all h where o=(1/§d(s)) (6(1),..., d(N)).

Proof
By Lemma 2, (p',n',x",a’) is also a FE in (I) with a,’= h—>§ a,’.

Now, take a look at the budget constraints of all consumers with the following
manipulation:

p(0)(xn(0)-ex(0)) = p(0)'(xn(0)'-e4(0)) = - Zn(s)an(s)’'= —Zo(s)an(s)’
=~ 2 [0(5)/2(9)) an(s)'= = Z (V(s) +m(5)*) (an(s) 724(s))
=~ 218" (@n(5)/24()) = ~ Zn(s)* an(s)

P(s) (Xn(s)-en(s)) = (1/Zd())p(s)" (xn(s)-en(s)) = (1/ Zd(s)an ()= 24(s)

for s=1,..,N and h=1,..,m. It is also easy tio verify that all the other condi-
tions for coinsumer’s maximization are satiafied.
Thus, (x,a,) is feasible and also optimal relative to (p,n*) Q.E.D.

Proposition 3
The set of equilibrium allocations with a fixed n* € Q(n) in (1) is identical to
the set of equilibrium allocations with = varying within T(n*) in (II).

Proof
This is obvious from Lemma 11 and Lemma 12. Q.E.D.

Now, let’s define the following set again:

E@m*) = {(p,n,e)E PxT(n*)xQ: Z(p,m,e)=0}
which is nothing but an equilbrium manifold E when Q(n) is restricted to T(r*).
Notice that the dimension of E(n*) is dependent on the choice of {A,} unlike E
and hence the indeterminacy of equilibria is too.

Proposition 4
if n is fixed at some n* € Q(n) and dim(T(n*)) =n, then X(e) contains an n-
parameter family of equilibrium allocations for every e € Q;.

Proof

This is obvious because all the previous arguments about real indeterminacy
are still valid after E is replaced by E(n*). Q.E.D.
Remark 4

When n*€ Q(n) is fixed and {A,} is given with A; =RN, then there exists at
most a finite number of financial equilibrium allocations no matter which A, is
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given for h € H\{1} since T(n*)=n*. Also, when Ay, is given with dim(A;) =M,
then dim (T(n*))=N-M and hence ther exists an (N-M)-parameter family of
equilibrium allocations if {A,} satisfies (a2)-(ad).

1V. ROBUSTNESS OF FINANCIAL EQUILIBRIA

Financial economy considered here exhibits the striking property of dimensional
real indeterminacy which does not appear in the Arrow-Debreu economy. In ad-
dition to this property, as was pointed out by Geanakoplos and Mas-Colell[11],
the complete market hypothesis with financial assets lacks ‘‘robustness’’ because
there appears an (N-1)-dimensional real indeterminacy even after only a single finan-
cial asset is missing relative to the number of states to be insured.

This lack of robustness can be more conspicuously demonstrated here.

Proposition 5

If {Ap} is given such that A =RN for all h € H\{j} and A; with dim(A;) =N-1
and with the origin as the only element of O(A)) containing 0 as its coordinate,
then X(e) contains an (N-1)-parameter family of equilibrium allocations for every
e € Q.

Proof

Under the assumption on {Ay} here, V,=V,..Hence, all the steps in the pro-
of of proposition | will hold for every e € Q,. Therefore, there appears an (N-1)-
parameter family of equilibrium allocations. Q.E.D.

This implies that real indeterminacy will arise even with complete financial
markets if there is just a single consumer who is minimally restricted to choose
his portfolio of contingent securities in financial markets. Also, the set of finan-
cial equilibrium allocations may be quite volatile to a little perturbation of finan-
cial opportunities and this can be interpreted as another aspect of the lack of
robustness of financial economy. The following examples will be useful to unders-
tand these arguments.

[Example 2]

There are 3 consumers h=1,2,3 and two uncertain states in period 1, denoted
by s=a,. There is only one commodity in each period.

There are two contingent securities available in the current financial markets.
Consumers’ endowments are assumed to be given as follows: e, =(ey(0), ep(a),
en(B)) € R3 | and there is no ““t”” € R, such that DUj(e;) = t-DUj(e;) for any i,j

Also, financial opportunities are assumed to be given as follows:

A =A,=R2

Aj;={a; € R2: a;=(a;3 (a), a;(f)) such that aj(a)=k-a;(f) for some k =0}
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which is a 1-dimensional subspace of R2, parameterized by the choice of a real
number k.®

Here, the following normalization convention is utilized for the notational con-
venience:

P={p€R3 : p(o)=1}={1}xR2 _ and
Qm={n €R2 :n(e)=1}={1}xQn(B))={1}xR,

Next, define the following set:

S(n(B)) = {n(B) € R: there is p € P and a, € A, shch that (p,n,x,a) is a Pareto

optimal FE}

Since there will be generically a finite, odd number of Pareto optimal FE relative
to the given endowment, there will be at most a finite, odd number of n() € Q
(n(f3)) supporting Pareto optimal FE.

Thus, S(n(f)) contains at most a finite, odd number of elements.”’

Notice that Q(u(F)\S(rn(B)) is the analogue of V(p,n) in this example.

Now, let’s take a look at the first order conditions of consumers’ maximiza-
tion problem:

(17) DUp(xn) = (u(0), pnla) pla), un(B) p(B)
Hn(0) = pp(a), pp(0) m(B) = up(B) for h=1,2

(18) DU;(x3) = (u3(0), us(a) p(a), (@), us(B) p(f)
H3(0) (k +n(B)) =kus(a) +u3(B) for h=3

Next, pick n(3), n(f)’ € Q (n(B))\S(n(B) such that n(f)#n(B)’ and let (p,n,x,a) and
(p’,n’,x’,a’) be corresponding FE.
Suppose that x=x'. Then the following relations must hold:

(19) up(0) = un(0)’, p(a) = p(a)’, n(B) p(B)=n(B)' p(f)’ from (17) for h=1,2 and
(20) p3(0)=p3(0)', d3(a)=4s(a)", d5(B) p (B)' from (18) and
k +n(B) =kds(a) + d&3(B), k+n(B)'=kds(a)’'+ d3(f)

Next, multiplying p(8) to both sides of the 1, relation and p(f)’ to the
2.4 relation in(20) and using(19), we can get the following relation:

1) kpB)+n(B) p (B)=kd; (@) p (B) + J3 (B) p (B)

(22) kpB)'+n(B)’ p(B)'=kp (B)'+n(B)P(B) =kd3(a)’ p(B)'+d3(A) P(B)’
=kd3(a)p(B)' + d3(B)p(B)

(23) Substracting (22) from (21), k(p(B)-p(B)") = kds(a) (P(B)-P(B))

8In this case, it amounts to saying that he is subject to hold only a mutual fund formed from con-
tingent securities o, in the ratio of (k/(1+k), 1/(1 +k)).
*S(n(f3)) may be empty according to the choice of k.
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Since k=0 and p(#)=p(B)’, d3(a)=1 from (23) and d3(a)'=1 from (20).

Also d;(8) = n(B) and d;() = n(B) from (20) and hence n(f), n(8)' € S (n(B)). This
is a contradiction. Thus, x#x'. Therefore, there exists a 1-parameter family of
distinctive financial equilibrium allocations corresponding to each n(f8) € Q(n(f3)).

Observe that this argument is valid whether S(n(f)) is empty or not. If S(n(f3))
is empty, then there is a 1-parameter family of distinctive equilibrium allocations
and none of them is Pareto optimal. If S(n(f)) is non-empty, then there is a
I-parameter family of distinctive equilibrim allocations converging to a Pareto op-
timal allocation.

[Example 3]

Suppose that other fundamentals of the economy are identical to example 2
except financial opportunities. Here, two types of financial opportunities will be
compared with each other. Let {A;} and {A;’'} denote two different financial op-
portunities in the following sense:

{Ap}; Aj=R2
A,={a, € R2: aya)=k-a,(f) for k#0}
Aj;={a; € R2: aj(a)=g-a;(f) for g#0, k}
{Av'l A=A
A=A,
Ay'={a; € R2: as(a) =g"a;(B) for g'=g+¢e where ¢ is an arbitrary
small real number }

Let (p,n,x,a) be a FE relative to { A, } when n(8) € Q(r(8))\S(n(8)). Now, sup-
pose that x is also a FE allocation relative to {A;'}.
Then, there must be (p',n’,a’), supporting x, satisfying the following conditions:

(24) DU(xy) = (ph(0), uh(a)p(a), un(B)p(B)
=un(0)', pn(a@)'p(@)’, un(B)'P(B)")
(25) oy (@), u(0)'=py(a)" and hence dy(a)=d(a)’
d1(B)=n(B), 6,(B)'=n(B)’' and hence n(B) p (B)=n(B)'p(B)’
(26) k+ n(B)=kdy(a) + d,(B)
g+ n(B) = gds(a) + &3(f) and
27) k+m (f)'=kd; (a)'+ 52B)’
g'+n(B) =g'dy(a) + d3(a)' + d5(B)’
(28) From (24), (25), p(e)=p(a)’ and hence ay(a)’ for h=1,2,3
Then, a,(a) =ka,() = a(a)'=ka,(B)' and hence a,() =a,(f3)’
(29) Thus, p(f)=p(B)' from (28) which implies that a;(3) = a;()’
Since as(a) =ga;(f) = as(e) =g'a3(f)’, g=g’ from (29). This is a contradiction
to the assumption on A; and A;’. Thus, x can’t be supported as a FE allocation
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relative to { A’} and this is true for any arbitrary FE relative to { A, }. This means
that the set of FE allocations are generically disjoint each other relative to a very
small change in financial opportunities. This shows another aspect of the volatili-
ty of financial economy.

V. CONCLUDING REMARK

It has been shown that contingent securities model with restrictions on the port-
folio choices can yield a real indeterminacy of equilibria as the canonical model
of incomplete financial markets. Thus, contingent securities model is rich enough
to discuss all the problems possibly arising in economies with incomplete finan-
cial markets, including those problems associated with restricted participations in
financial markets.'® For any restrictions on contingent securities choices considered
here can be reinterpreted as a certain type of restricted participations in financial
markets where returns from assets are in a general position.

The basic message here is that economies with financial assets are quite indeter-
minate so that any little perturbation of some parameters in the economy will yield
a continuum of equilibrium allocations. As is known, there appears real indeter-
minacy of equilibria with a dimensional property even if a single asset is missing
from a complete financial markets. Furthermore, the same phenomenon can also
prevail even if financial markets are complete, but there is just a single consumer
who is minimally restricted in choosing his portfolio. This shows the tremendous
lack of robustness of complete market hypothesis with respect to a small pertur-
bation of parameters in economies with financial markets. By imposing various
types of restrictions on contingent securities model, we can not only examine the
effect of such perturbations on the set of equilibrium allocations, but also in-
vestigate other problems such as the existence of Pareto optimal FE.
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