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Square Density Weighted Average Derivatives 
Estimation of Single Index Models 

Myung Jae Sung* 

This paper proposes an average derivatives estimator for index coefficients under a single 
index model, which does not require restrictive conditions such as zero boundary density or 
density trimming that are often adopted in previous studies including Powell, Stock, and 
Stoker (1989, PSSE) and Härdle and Stoker (1989, HSE), among others. Coefficients are 
consistently estimable by nonparametric mean regression with square density weighted 
average derivatives (SWADE). Relaxed requirements for SWADE allow more general 
applications. The asymptotic distribution of SWADE is equivalent in precision to the 
aforementioned average derivatives estimators (PSSE and HSE). Monte Carlo simulations 
show that SWADE outperforms HSE in finite sample but is slightly and weakly outweighed 
by PSSE. These imply that SWADE allows more flexible applications with relaxed 
distributional characteristics than PSSE and HSE at the expense of slightly deteriorated 
behavior in finite sample. 
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8 
I. Introduction 

 
This paper proposes a nonparametric method of estimating coefficient vector 

consistently under a single index model framework, which does not require 
restrictive conditions such as zero boundary density or density trimming that are 
often adopted in previous studies including Powell, Stock, and Stoker (1989) and 
Härdle and Stoker (1989), among others. Coefficients are consistently estimable by 
nonparametric mean regression with square density weighted average derivatives. 

Let Y  denote a dependent variable and X  independent variables with the 
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regression function of ( | ) ( )E Y X G X= . Consider a model where the conditional 
expectation is explained by the single index such that 

 
( ) ( )tG X g X β=  (1) 

 
where the random variable X( )pX R∈ ⊂��  is generated from an absolutely 
continuous distribution and 1 1:g R R→  is a (possibly unknown) real-valued 
function. The vector X  has no intercept, as is embedded in ( )g ⋅ . Alternatively, 
the single index model can be written in the following form 

 
( )tY g X β ε= +  (2) 

 
where ( ) ( )tY G X Y g Xε β≡ − = − . The regression model specified as Equation (1), 
alternatively written as Equation (2), is attractive for its wide range of applications 
such as linear models, ‘Tobit’ models, binary choice models, duration models, 
reduced forms of simultaneous equations models, index models, etc.1 

In many semiparametric regression analyses, single index models are quite often 
adopted and simple to estimate the parameter vector β . If ( )g ⋅  is smooth 
enough, β  can be consistently estimable. Studies by Powell, Stock, and Stoker 
(1989, PSS hereafter), Härdle and Stoker (1989, HS hereafter), Stoker (1991), Park 
(1990), Han (1987a,b), Ichimura (1993), etc. have focused on this moment 
condition and contributed to estimating β  consistently. Furthermore, Xia (2006) 
proposed alternative estimators: outer product of gradients estimator and minimum 
average variance estimator, by lowering the dimension of the kernel smoothing in 
the aforementioned studies. 

Identification of β  in Equation (1), under the single index model framework,2 
requires some regularity conditions on ( )G ⋅  or ( )g ⋅  unless ( )g ⋅  is affine. 
____________________ 

1 Equation (2) also applies to a generalized regression model specified as ( )tY h X uβ= +  for some 
1 1:h R R→ , if certain conditions are imposed on ( , )X u  or ( )h ⋅ . An interesting finding from this 

argument is that identification of β  under the index model framework crucially depends on the 
relation between regressors and error terms. An example is the case where X  and u  are statistically 
independent. Then, ( | )E Y X  can be written as a function of tX β  and Equation (2) is applicable 
for ( | ) ( )tY E Y X Y h Xε β∗= − = −  for some real-valued function 1 1h R R∗ → . However, if X  and 
u  are not statistically independent, the conditional mean is generally not a function of a single index. 
There exists an exception: if ε  is dependent on X  only through tX β , the conditional 
expectation also becomes a function of tX β . 

2 There have been a number of studies involved in model checking of single index models. They are 
Fan and Li (1996), Aït-Sahalia, Bickel, and Stoker (2001), Xia, Li, Tong, and Zhang (2004), and Stute 
and Zhu (2005), among others. Fan and Li (1996) and Aït-Sahalia et al. (2001) proposed tests of single 
index models based on residual sum of squares. Xia et al. (2004) and Stute and Zhu (2005), together 
with Aït-Sahalia et al. (2001), proposed goodness-of-fit type test statistics. However, all of these suffer 
either the slower convergence rates than 1/2N −  or unknown asymptotic bias to be estimated (see Aït-
Sahalia et al., 2001). 
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Coefficient vector, β , can be identified by differentiating the conditional 
expectations. Suppose that ( )G ⋅  is continuously differentiable and that 

( ) 0G X∇ ≠ . Then, the derivatives of conditional expectations are proportional to 
β : 

 
( | )

( ) ( )tE Y X
G X g X

X
β β∂ ′= ∇ =

∂
. (3) 

 
An average of Equation (3) weighted by any nonzero functions of X  is also 

proportional to β . Define a new parameter of average derivatives weighted by 
square densities of the form 

 

2 2 2( | )
( ) ( ( ) ( )) ( ( ) ( ))tE Y X

E f X E f X G X E f X g X
X

δ β β∂⎛ ⎞ ′≡ ⋅ = ⋅∇ = ⋅⎜ ⎟∂⎝ ⎠
 (4) 

 
where ( )f X  is the density of .X  δ  is proportional to .β  In general, 

2( ( )E f X ( ))tg X β′⋅  is unknown. Thus, β  can be identified only up to a 
multiplicative constant.3 As discussed later, the choice of square density weighting is 
adopted to avoid density trimming or restrictive applications of zero density 
particularly on the boundary in the support of regressors, .X  Average derivatives 
estimators (ADEs) established in previous studies by PSS (1989) and HS (1989) 
require zero boundary density conditions. The ADE proposed by HS (HSE) 
depends on the density condition which is assumed to be zero at the boundary of 

.X  HSE inevitably involves density estimates in the denominators of the derivative 
estimates and, thus, may exhibit erratic behavior when the values of density 
estimates are very small particularly near the boundary of the support of .X 4 To 
avoid this problem, they introduce density trimming. PSS proposes a density-
weighted ADE (PSSE) of coefficient vector. They introduce density-weighting to 
avoid potential erratic behavior of the derivatives. However, PSSE requires zero 
boundary density condition for consistent estimation. These ADEs may be 
restrictively applicable because they preclude the distributions with boundary 
densities bounded away from zero.5 

Unlike other ADEs which require density trimming and zero boundary density 
as in PSS or HS, square density weighting is often useful by relaxing conditions 
other than zero boundary density or density trimming. The square density weighted 
____________________ 

3 Coefficient parameters are identified only up to scale through the ADEs, due to unknown function 
of conditional expectation ( )g ⋅  specified in Equation (2). Thus, coefficient estimates are often scale-
normalized in many empirical studies such that its first component is set to be unity without loss of 
generality. 

4 Refer to the second and third paragraphs for more in greater details on p. 988 of HS (1989). 
5 Refer to Assumption 2 of PSS (1989) and Appendix A.1 of HS (1989). 
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average derivatives are free from restrictive density conditions or density trimming 
embedded in denominators of the derivatives written in fractions because the 
denominators are totally removed by square density weighting. This is discussed 
more precisely in Section II. 

Section II proposes a squared density weighted average derivatives estimator 
(SWADE) of β  (or, equivalently δ ) up to a multiplicative constant, denoted by 
δ̂ .6 This provides a nonparametric method of estimating δ , which differs from 
those studied by Ichimura, PSS, HS, Stoker, Han, and Xia. Section II also lists 
sufficient assumptions for the asymptotic normality of the estimator (SWADE). 
Section III presents the asymptotic behavior of SWADE; its N − consistency and 
asymptotic normal distribution. Precision of the estimators of β  is also compared 
with the other ADEs proposed by PSS and HS. Section IV presents some 
concluding remarks. 

A superscript ‘t’, a prime symbol, and ‘∇ ’ denote a transpose of a vector (or a 
matrix), a derivative, and a gradient throughout the paper, respectively. 

 
 

II. Estimator and Assumptions 
 

II.1. The Estimator 
 
As shown in Equation (3), the derivatives of conditional expectations are 

proportional to .β  Furthermore, the square density weighted derivatives 
2 2( ) ( ) ( ) ( )tf X G X f X g X β β′∇ =  are also proportional to β . The scale of β  is 

not identified in both cases, if ( )g′ ⋅  is unknown. Redefine the parameters as 
( ( ))E Xδ δ≡ . 

Consider a nonparametric kernel estimator of the conditional expectation 
( | ) ( )i iE Y X G X= : 
 

ˆ( )ˆˆ( | ) ( ) ˆ( )
i

i i

i

T X
E Y X G X

f X
= ≡  

where 
1ˆ( ) i j

i j i jp

X X
T X K Y

Nh h≠

−⎛ ⎞
≡ ∑ ⎜ ⎟

⎝ ⎠
 and 

1ˆ( ) i j
i j ip

X X
f X K

Nh h≠

−⎛ ⎞
≡ ∑ ⎜ ⎟

⎝ ⎠
. 

____________________ 
6 This paper proposes an estimator for β  up to scale in the form of average derivatives estimator 

(ADE). An alternative is a semiparametric M-estimator (e.g. Ichimura, 1993, or Chen et al., 2014). 
ADE may have fewer advantages than the semiparametric M-estimators, in particular efficiency and 
more restrictive assumptions such as the continuous differentiability of the function ( )g ⋅  in 
Equation (1). However, according to Horowitz (2009), the semiparametric M-estimators generally 
have computational burden due to optimization processes, and, sometimes need density trimming 
(Ichimura and Todd, 2007). 
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( )K ⋅  is a weight function (or a kernel) and ( 0)h >  is a bandwidth sequence 
which declines at a suitable rate to zero as N →∞ .7 Differentiate ˆ( )iG X  with 
respect to iX : 

 

2 2 1
1

2

{ ( ) ( ) ( ) ( )}ˆ( ) ˆ ( )

i j i k i j i k

p

X X X X X X X X

j i k i j j i k i jh h h hN h
i

i

K Y K K Y K
G X

f X

+

− − − −
≠ ≠ ≠ ≠∑ ∑ ∇ −∑ ∑ ∇

∇ =  

2 2 1
1

2

{ ( ) ( ) ( ) ( )}
ˆ ( )

i j i k i j i k

p

X X X X X X X X

j i k i j h h h hN h

i

Y K K K K

f X

+

− − − −
≠ ≠∑ ∑ ∇ − ∇

=  

 
The denominator 2ˆ ( )if X  of ˆ( )iG X∇  is a scalar. Thus, the numerator of 
ˆ( )iG X∇ , i.e. 2ˆ ˆ( ) ( )i if X G X∇ , is proportional to the derivative estimate ˆ( )iG X∇ . 

Take 2ˆ ˆ ˆ( ) ( ) ( )i i iX f X G Xδ ≡ ∇  as the estimator of 2( ) ( ) ( )i i iX f X G Xδ = ∇ . 
Observe that the terms in which j k=  are zero. Without loss of generality, drop 
these terms and let ( )iXδ  be of the following form: 

 

2 2 1

1
(̂ ) i j i k

i j i k i jp
k j

X X X X
X Y K K

N h h h
δ ≠ ≠+

≠

⎧ − −⎛ ⎞ ⎛ ⎞⎪= ∑ ∑ ∇⎨ ⎜ ⎟ ⎜ ⎟
⎪ ⎝ ⎠ ⎝ ⎠⎩

 

i j i kX X X X
K K

h h

⎫− −⎛ ⎞ ⎛ ⎞⎪− ∇ ⎬⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠⎭

.                          (5) 

 
Let ( , , )q Y X ε≡  where ( )Y G Xε ≡ − ; ( | ) 0E Xε = . By taking an average of 

( )Xδ over N i.i.d. observations, we can propose a squared density weighted average 
derivatives estimator of δ  as 

 
2

1 1

1 1ˆ ˆ ˆ ˆ( ) ( ) ( )N N
i i i i iX f X G X

N N
δ δ= =≡ ∑ = ∑ ∇ 13

1
(̂ , , )N

i j i k i i j k

k j

s q q q
N = ≠ ≠

≠

= ∑ ∑ ∑  (6) 

 
where 1 2 3

ˆ ˆ ˆ ˆ ˆ( , , )i j ks s q q q s s s≡ = + + , 

1 2 1

1ˆ ( )
6

i j i k i j i k
j kp

X X X X X X X X
s Y Y K K K K

h h h hh +

⎧ − − − − ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪≡ − ∇ − ∇⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

,  

2 2 1

1ˆ ( )
6

j k j i j k j i
k ip

X X X X X X X X
s Y Y K K K K

h h h hh +

⎧ − − − − ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪≡ − ∇ − ∇⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

, 

3 2 1

1ˆ ( )
6

k i k j k i k j
i jp

X X X X X X X X
s Y Y K K K K

h h h hh +

⎧ − − − − ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪≡ − ∇ − ∇⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

. 

____________________ 
7 ( )K ⋅  and h must satisfy a couple of conditions for the consistency and asymptotic normality of 

δ̂  to be proposed below. The conditions are discussed more in detail in Assumptions 4 and 5 in 
Section III. 
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II.2. Assumptions 
 
Five assumptions for the proper asymptotic behavior of δ̂  are presented here. 

Assumptions 1 and 2 give the regularity conditions on X . Assumption 3 gives an 
identification condition for δ . Assumption 4 presents a higher order kernel for 
asymptotic bias reduction of the estimator. Assumption 5 shows the conditions the 
bandwidth sequence h must satisfy for the N − consistency of δ̂ . 

 
Assumption 1: 
(a) ( , )X Y  is a random pair which is continuous on 1pR +  where 2p ≥ . The 
underlying measure υ  is a Lebesgue measure on 1pR + . 
(b) ( , ), 1,2, ,i iX Y i N= "  are a random sample from the population. 
 
Assumption 2: 
The density ( )f X  of X  is bounded and ( 1)λ + − times continuously differen-
tiable with bounded derivatives in the support X��  for some λ  satisfying 

2 1pλ > + . 
 
Assumption 3: 

1: pG R R→  where ( ) ( | )G X E Y X=  is bounded and ( 1)λ + − times continu-
ously differentiable with bounded derivatives. 

 
Assumption 3 implies that 1 1:g R R→  is bounded and ( 1)λ + − times continu-

ously differentiable with bounded derivatives where ( ) ( | ) ( )tG X E Y X g X β= = . 
 

Assumption 4: 
Let the set of kernels, ,pK λ , be the class of all measurable bounded real-valued 
functions 1: pK R R→  such that | ( )|K K ∗⋅ < < ∞ . For pu R∈  and 1 2( , , ,r r "  

) p
pr N∈ , ( )K ⋅  satisfies 

 
(a) ( ) 1K u du∫ = , 
(b) 2( )K u du∫ < ∞  and ( ) ( )tK u K u du∫∇ ∇ < ∞ , 
(c) ( ) ( )K u K u= − , 
(d) ( ) 0K u∇ →  and ( ) 0K u u→ , as u→±∞ , 

(e) 1
1

1
1

0 0
( )

0
p prr

p
p

if r r
K u u u du

if r r

λ
λ

= < + + <⎧⎪∫ ⎨< ∞ < + + =⎪⎩

"
"

"
. 

 
Assumption 5: 

1 4 2e pN h− + →∞  and 2 0Nh λ →  as N →∞  for some 0e > . 
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ADEs are often simple to understand and easy to calculate. Note that the 
estimators derived by average derivatives require differentiability of (conditional) 
expectation function denoted by ( )g ⋅  in Equation (2) and continuity of regressors. 
One of their disadvantages is that they are not applicable to discrete regressors 
because ( )g ⋅  is not differentiable with respect to discrete variables. In this sense, 
all ADE-type estimators for single index models such as PSSE and HSE, of course, 
including SWADE proposed in this paper assume that regressors are continuous 
and ( )g ⋅  is continuously differentiable. Otherwise, different methods need to be 
posed for identification of index coefficients. The estimation methods proposed by 
Ichimura (1993) or other M-estimators such as maximum score estimators need to 
be pursued. 

 
 

III. Asymptotic Behavior of the Estimator for δ 
 

III.1. Asymptotic Behavior 
 
This section presents the asymptotic behavior of δ̂ . 
Define 2( ) ( ) ( | )X f X E Xϕ ε≡  and ( ) ( ) ( )Z X f X f Xδ ε≡ − ∇  where ( )Xδ =  
2( ) ( )f X G X∇  and 
 

2 2( ) { ( ) ( ) ( | ) ( ) ( ) ( ) }t t tVar Z E X X E X f X f X f Xδ δ ε δδ∑ ≡ = + ∇ ∇ −  

{ ( ) ( ) ( ) ( ) ( ) ( ) }t t tE X X X f X f X f Xδ δ ϕ δδ= + ∇ ∇ −   

 
δ̂  is N − consistent for δ , and its asymptotic variance is the same as that of 

3Z . The following two theorems show its asymptotic normality and the consistency 
of variance matrix. 

 
Theorem 1. Given Assumptions 1 through 5 as stated in Section II, ˆ( )N δ δ−  
has a limiting normal distribution with zero mean and variance 9Σ : 

 
ˆ( ) (0,9 )dN Nδ δ− → Σ . 

 
Generally speaking, the convergence rate of a nonparametric (kernel) conditional 

mean estimator (e.g. ˆ( )G X ) is pNh  and that of its derivative is 2pNh + . This 
is because the derivative estimator [e.g. 2ˆ ˆ( ) ( )f X G X∇ ] is more slowly convergent. 
However, the convergence rate of δ̂  is N . This is because ˆ( )G X∇  [or 

2ˆ ˆ( ) ( )f X G X∇ ] is taken to be averaged over the sample and because the projection 
of a U-statistic [see Lemma 2 in Appendix A] of the estimator accelerates the rate of 
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convergence to N , as is usual in i.i.d. sample averages. 
We now propose a consistent estimator of the asymptotic variance. Let 
 

1

1ˆ( ) i j
i j ip

X X
f X K

Nh h≠+

−⎛ ⎞
∇ ≡ ∑ ∇ ⎜ ⎟

⎝ ⎠
, 

21ˆ ˆ( ) i j
i j i jp

X X
X K

Nh h
ϕ ε≠

−⎛ ⎞
≡ ∑ ⎜ ⎟

⎝ ⎠
 where ˆˆ ( )j j jY G Xε = − . 

 
Also, let the variance estimator be 
 

1

1 ˆ ˆ ˆˆˆ ˆ ˆ ˆˆ[ ( ) ( ) ( ) ( ) ( ) ( ) ]N t t t
i i i i i i iX X X f X f X f X

N
δ δ ϕ δδ=Σ = ∑ + ∇ ∇ − . 

 
Theorem 2. Under Assumptions 1 through 5 in Section II, Σ̂  is a consistent 
estimator of Σ . 

 
III.2. Comparison of Precision 

 
Throughout this section, the conditional expectation is assumed to be a function 

of single index, tX β , and average derivatives estimators for β  are compared. 
Alternative estimators for β , other than δ , are derived from integrating 

[ ( )]E G X∇  in HS or [ ( ) ( )]E G X f X∇  in PSS and Stoker by parts and from 
setting the boundary density of X  equal to zero: 

 

[ ( )] ( ) ( ) ( ) ( )
X

E G X G X f X G X f X dX
X

= +∞
∇ = − ∫ ∇

= −∞
 

( ) ( )
( )

( ) ( )
f X f X

E G X E Y
f X f X

⎛ ⎞ ⎛ ⎞∇ ∇
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2[ ( ) ( )] ( ) ( ) 2 [ ( ) ( )] 2 [ ( )]
X

E G X f X G X f X E G X f X E Y f X
X

= +∞
∇ = − ∇ = − ∇

= −∞
 

 
since ( ) 0f ±∞ =  and | ( )|G X < ∞  for all X . Thus, the structures of their 
estimators depend on the boundary density condition. However, that of δ̂  does 
not depend on the density on the boundary of support. This is because δ̂  is 
derived from differentiating the kernel estimator of expectations and weighting it by 
the squared density of X , and because we avoid the method of integration by parts 
employed for identification of the index coefficient in PSS as well as in HS. 
Therefore, δ̂  is free from the boundary density condition and thus, we have not 
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imposed any restrictions on the boundary density of X . 
In regard to the precision of estimators for β , the estimator of HS (HSE) and 

those of PSS (PSSE) and Stoker (SE) are asymptotically equivalent to 
1/2( , ) ( )pr X Y o N −+  and 1/2( , ) 2 ( ) ( , ) ( )pX Y f X r X Y o Nρ −= + , respectively, where 

2

( )
( ) ( )

( , ) ( ) ( ( )) f Xt t Z
f X f X

r X Y g X Y g Xβ β β ∇∗ ∗′= − − =  for Z  defined earlier (see HS 

p.988, PSS p.1412 or Stoker p.104). The asymptotic variances of HSE and PSSE (or 

SE) are 2 ( )
[ ( , )] ( )Z

f X
Var r X Y Var=  and 2 ( )

[2 ( , )] 4 ( )Z
f X

Var X Y Varρ = , respectively, 

while that of δ̂  is (3 )Var Z ; the only difference among those is the weights: 1 in 

HSE, ( )f X  in PSSE (or SE), and 2( )f X  in δ̂ . This does not make any 

qualitative difference in the measurement of precision as well as in the inference on 

the hypotheses about β . 
The choice of weights sometimes has different effects on the classical U-statistic 

structure of estimator in deriving asymptotic properties. As noted in PSS (1989, in 
the last paragraph of p. 1424), density weighting gives a simpler U-statistic structure 
with double summations as shown in Equation (3.4) of PSS (1989), whilst square 
density weighting gives a more complicated U-statistic structure with triple 
summations as shown in Equation (6). 

 
III.3. Finite Sample Behavior 

 
III.3.1. Model Specifications 
Despite their asymptotic equivalence of precision, the performance of PSE, HSE, 

and SWADE in finite sample could be different. This is investigated for the case 
where 3p =  for many different models consistent with “single index” 
specification as shown in Equation (1).8 This study replicates the models specified 
by PSS (1989): 

 

1 1 2 2 3 3i i i i iY X X Xα β β β ε∗ = + + + +   

 
where 0α =  and ( 1 2 3, ,β β β )=(1,2,3). As in PSS (1989), the models considered 
here are linear or binary choice models with homoskedastic or heteroskedastic errors. 
There are four combinations of models and errors. In addition, the simulations are 
repeated for two types of regressors; the one is for zero densities and the other for 
strictly positive densities, both at the boundaries of the support. Therefore, the 
simulations are conducted for the total number of eight different combinations of 

____________________ 
8 A slightly different case is also discussed in Appendix C for a simple linear regression, where the 

variance of error term is smaller than those of regressors such that 2(0,0.02 )i Nε ∼  where X has zero 
mean and unit variance. This is to compare the performance of ADEs under different model 
specifications with different error specification from the above case. 
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models, errors, and regressor types. 
In the linear models, iY∗  is observed as it is. In the binary choice models, the 

latent variable, iY∗ , is observed as either zero or one such that 1[ 0]i iY Y∗= >  
where an indicator function, 1[ ]⋅ , is one when the argument is true and zero, 
otherwise. 

For homoskedastic models, iε  is assumed to be standard normal and 
independent of regressors. For heteroskedastic models, iε  is multiplicatively 
heteroskedastic such that i i ivε σ= ⋅  where iv  is an i.i.d. standard normal 
sequence and 2 exp( )t

i iX kσ β= + , where k is a constant chosen so that 2( ) 1iE σ = , 
given the distribution of 1 2 3( , , )i i i iX x x x= . Here, elements of X  are denoted by 
lower case letters to distinguish from the i-th observations of X  for 1,2, ,i N= "  
in the sample which is denoted by upper case letters in this paper. 

The consistency and finite sample behavior of ADEs depend on the 
distributional characteristics of regressors. In particular, both PSSE and HSE 
require the condition of zero boundary densities of regressors. Otherwise, the 
coefficient parameter of interest cannot be identified and their proposed estimators 
are no longer consistent for the index parameter of interest. The consistency of 
SWADE does not depend on the boundary densities of regressors. In this sense, 
SWADE outweighs PSSE and HSE in terms of consistency of the estimators 
particularly when the zero boundary density condition is not satisfied. However, 
their finite sample behaviors may be different. In these regards, Monte Carlo 
experiments are conducted under the two distributional specifications of X . 

In the first specification of regressors, X  is assumed to have zero boundary 
densities as in PSS (1989). More specifically, it is assumed that 1ix  is distributed 
Chi-square with degrees of freedom 2, that 2ix  is standard normal, and that 3ix  
follows gamma distribution with parameters, theta=2 and alpha=18. 1ix  and 3ix  
are standardized to have zero mean and unit variance. 

In the second specification, the density of X  is assumed to be strictly positive 
and, thus, bounded away from zero everywhere in the support. Note that the most 
important identification condition of zero boundary density is violated for PSSE 
and HSE in this specification. Assume that 1ix  is distributed uniform such that 

1 1i ix u∗ = , and let 2
2 2i ix u∗ =  and 

3

1
3 1ii ux∗ +=  where (0,1)liu U∼  for 1,2,3l = , 

which denote mutually independent uniform distributions defined over the interval 
(0,1). ( 1 2 3, ,i i ix x x∗ ∗ ∗ ) are also standardized.9 

Suppose that ( ,i iX Y ), 1,2, ,300i = "  are a random sample of size 300 where 
3p = , and that the researcher cannot observe ε  but only the realizations of 

( ,X Y ). The researcher knows that the conditional expectation of Y  given X  is 
a function of an index, ( )tg X β , for some unknown continuously differentiable 

____________________ 
9 Note that 1( ) 0.5iE x∗ = , 1

1 12( )iVar x∗ = , 1
2 3( )iE x∗ = , 4

2 45( )iVar x∗ = , 3( ) ln(2)iE x∗ = , and 3( )iVar x∗  
21

2 (ln(2))= − . 



Myung Jae Sung: Square Density Weighted Average Derivatives Estimation of Single Index Models 311 

( )g ⋅ . 
With the constructed samples, the parameter of interest β  (that is, δ ) is 

estimated by the proposed estimator, SWADE defined in Equation (6) for each of 
the above eight combinations of models, errors, and specifications of regressors. 
Furthermore, it is also estimated by the methods proposed by PSS and HS to 
compare their finite sample behaviors.10  In addition, a couple of parametric 
regressions are also compared. They are ordinary least squares (OLS) and Probit 
estimators. The OLS estimator known as the best linear unbiased estimator 
(BLUE) is compared for all of eight combinations of models, errors, and 
specifications of regressors, to provide a baseline or a standard for comparison of 
behavior between estimators, although it is biased under the binary choice models. 
The Probit estimates are provided for binary choice models. 

The above process is repeated four hundred times independently to construct 
empirical distributions of the aforementioned estimators. 

Tables 1 through 4 report summary statistics for aforementioned ADEs, OLS and 
Probit estimators under the four different combinations of models and errors 
between linear and binary choice models and between homoskedastic and 
heteroskedastic errors under the first specification of regressors. Tables 5 through 8 
report the same statistics under the second specification of X . As in PSS (1989), 
reported summary statistics include sample mean (MEAN), standard deviation 
(SD), root mean squared error (RMSE), quartiles (LQ, Median, and UQ), and 
median absolute error (MAE) for both specifications. 

The aforementioned ADE methods can identify the parameter of interest only up 
to scale. For a legitimate comparison, the coefficient estimates need to be 
normalized. The parameter estimates are normalized/rescaled by dividing them by 
the average value of the first component of the parameter, δ , for simplicity of 
discussion.11 Note that the normalized sample mean of the first component ( 1β̂  or 
____________________ 

10 The following higher order Gaussian kernel is used for all of ADEs in the Monte Carlo 
simulations:  
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where ma  and mb  ( 1,2, ,m λ= " ) satisfy the following two conditions: 1 1m maλ

=∑ =  and 
2

1 0l
m m ma bλ
=∑ =  for 1,2, , 1l λ= −" . (See Bierens, 1987, p. 112.) Smoothing parameters are specified 

as follows. Since 3p =  in this example, set 8λ =  according to Assumption 2. We specify 
1/2

mb m−=  and solve the above linear equations system for ma . As in PSS (1989), let 1h = . This 
Gaussian kernel is also used in the simulations for the estimates of PSS and HS. 

11 If the parameter estimates are divided by the corresponding estimates of the first component ( 1β , 
or 1δ ), the absolute values of the estimates of the other components, ( 2 3,β β ) or ( 2 3,δ δ ), tend to be 
inflated and, thus, result in biased inference. Although the true parameter is ( 1 2 3, ,β β β ) where 

2 2 1/c β β=  and 3 3 1/c β β= , the averages of the estimates of the second and third elements divided 
by the estimate of the first element tend to be larger than 2c  and 3c  in its absolute values, 
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1δ̂ ) is always unity, since the estimates are rescaled by the absolute values of the 
average estimates of the first component ( 1β , i.e., 1δ ). 

 
III.3.2. Specification 1: Zero Boundary Densities 
In this section, the simulation results for the regressors with zero boundary 

densities are discussed. The results are reported in Tables 1 through 4. 
Appropriately specified parametric regressions provide best performance in finite 
sample among all; the OLS estimates perform best for linear models and the Probit 
estimates for binary choice models regardless of error specifications. The OLS 
estimates are biased for binary choice models. Unlike the misspecification biases of 
the OLS estimates particularly for binary choice models, nonparametric ADEs 
including PSSE, HSE and SWADE are robust to diversified parametric 
specifications of single index models. However, their estimates have larger 
variability than those of other parametric estimators. 

Specification of zero boundary densities of regressors together with other 
regularity conditions allows consistency of PSSE and HSE. However, HSE without 
density trimming seems to show relatively erratic behavior reflected by much larger 
values of the SD, RMSE, and MAE than those of other ADEs. In particular, HSE 
behaves very poorly for binary choice models. Both the variability measures and 
absolute mean deviations from the prespecified parameter values of HS estimates 
are largest among all ADEs without an exception throughout all combinations of 
models and errors. In this regard, HSE without density trimming is not sufficiently 
well-behaved in finite sample, compared with other ADEs. In this sense, SWADE 
outweighs HSE in terms of finite sample behavior. 

Table 1 reports the simulation results for a homoskedastic linear model. The 
OLS estimator performs best among all; its SD, RMSE, quartile range (=UQ-LQ), 
and MAE are smallest. The average values of rescaled parameter estimates for the 
second and third components ( 2 3,β β ) (i.e., ( 2 3,δ δ )) are close to the true parameter 
values (2,3) among all ADEs except for 3δ̂  of PSSE. SWADE is slightly poorer 
than PSSE in terms of variability measures; PSSE has smaller values of the SD, 
RMSE, quartile range, and MAE for 1δ̂  through 3δ̂ . However, the absolute 
deviations of sample means from the prespecified parameter values of 
( 2 3,δ δ )=(2,3) are larger for PSSE than for SWADE, although the difference 
between them seems small. In this sense, the finite sample behavior seems 
indifferent between PSSE and SWADE under the homoskedastic linear model. 

For a binary choice model with a homoskedastic error reported in Table 2, the 
Probit estimator performs best in finite sample, among all the consistent estimates, 

____________________ 
respectively. To avoid this scale problem, the estimates should be divided by the average values of the 
first component estimates instead of its estimate itself. To maintain the signs of the estimates, only the 
absolute values of the averages are used. 
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in terms of absolute deviations of sample means from the prespecified parameter 
values of (1,2,3). It is remarkable that the finite sample behaviors of the OLS 
estimates are best among all, despite their asymptotic inconsistency for binary 
choice models unlike others. Although this appears weird, biased estimates may 
sometimes outperform consistent ones in a particular finite sample. This is quite 
possible particularly when the biases of biased estimators are smaller than those of 
consistent ones in particular finite samples. Note that the asymptotic biases of the 
former do not vanish unlike that of the latter. The biasedness of OLS estimates for 
binary choice models causes a noticeable increase in the variability of estimates; for 
example, the SD for 3δ  increases from 0.060 in Table 1 to 0.184 in Table 2. The 
shift from linear to binary choice models increases the absolute deviations of sample 
means of all average derivatives estimates from true parameter values of (1,2,3) as 
well as the variability measures of the SD, RMSE, and MAE, both significantly. The 
“MEAN” column indicates that the ADEs for 2β  are relatively close to their true 
value of 2 except for HSE; PSSE gives the smallest bias for 2β  (0.242=2.242-2). 
However, its median value is not as close to two as that of SWADE: 1.832 
(SWADE) vs. 1.772 (PSSE). In addition, the variability measures for SWADE are 
significantly smaller than those for PSSE. For 3δ , SWADE shows the best results 
among all ADEs in terms of mean deviations as well as variability measures. 
However, the differences are not significantly noticeable. In some sense, SWADE 
seems almost as equivalent as PSSE in terms of finite sample behavior. 

Simulation results for heteroskedastic linear and binary choice models are 
reported in Tables 3 and 4, respectively. The variability measures (SD, RMSE, and 
MAE) of ADEs for heteroskedastic errors are significantly smaller than those for 
homoskedastic errors, particularly for SWADE and PSSE.12 The sample mean of 
SWADE for ( 2 3,β β )=(1.874,2.937) is slightly closer to the true value (2,3) than 
that of PSSE (1.801,2.894) for linear models. However, the latter (2.219,3.360) is 
slightly closer than the former (2.271,3.409) for binary choice models. The 
variability measures for SWADE are slightly smaller than those for PSSE in linear 
models. This inequality is reversed for binary choice models between Tables 3 and 4. 
HSE without density trimming for heteroskedastic errors is not sufficiently well-
behaved particularly for binary choice models; the mean deviations from true 
parameter value for ( 2 3,β β ) are noticeably large with much larger variability 
measures than other ADEs. As discussed earlier, this is probably because the erratic 
behavior is caused by the infinitesimal density estimates in the denominator of HSE 
particularly near the boundaries of regressors with zero density. 

Based on the results of simulations, ADEs seem to yield similar parameter 

____________________ 
12 An example for this case can be found in PSS (1989). The SD and RMSE of PSSE are smaller 

for heteroskedastic errors than for homoskedastic ones both for binary choice models. See Tables II 
and IV of PSS (1989). 
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estimates except HSE; the average values of parameter estimates are close to the 
true parameter value, (1,2,3), and the biases are not noticeably large. The standard 
deviations of the estimates are slightly different over the three estimators. PSSE has 
smaller values of SD, RMSE, and MAE than SWADE for homoskedastic linear 
models. SWADE has smaller variability measures than PSSE in other models. HSE 
has larger values of SD, RMSE and MAE than PSSE as well as SWADE. Although 
its behavior for homoskedastic linear models in finite sample is slightly and weakly 
outweighed by that of PSSE, SWADE seems relatively well-behaved for models 
with heteroskedastic errors. 

In sum, SWADE is asymptotically equivalent in precision to the established 
average derivatives estimators of PSSE and HSE. SWADE allows flexible 
applications with less restrictive distributional characteristics than PSSE and HSE 
at the expense of slightly deteriorated finite sample behavior particularly for 
homoskedastic errors. In other words, there exists a trade-off between wider 
applications and finite sample behavior. 

 
[Table 1] Finite-sample Behavior of Estimators for Homoskedastic Linear Model: 

Specification 1 
 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 4.133 4.127 3.280 -1.782 1.207 3.548 

 2β̂  (i.e., 2δ̂ ) 2 2.127 4.090 4.087 3.178 -0.550 2.252 4.605 

 3β̂  (i.e., 3δ̂ ) 3 2.912 4.423 4.418 3.514 -0.187 2.836 5.879 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 4.066 4.061 3.224 -1.765 1.215 3.515 

 2β̂  (i.e., 2δ̂ ) 2 2.187 4.033 4.032 3.169 -0.283 2.319 4.734 

 3β̂  (i.e., 3δ̂ ) 3 3.546 4.138 4.169 3.386  0.696 3.479 6.511 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 6.611 6.603 5.230 -3.671 1.306 5.516 

 2β̂  (i.e., 2δ̂ ) 2 1.834 6.598 6.592 5.138 -2.264 1.899 5.939 

 3β̂  (i.e., 3δ̂ ) 3 3.112 6.680 6.672 5.372 -1.442 3.486 7.381 

OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.058 0.058 0.047  0.957 0.999 1.036 

 2β̂  (i.e., 2δ̂ ) 2 2.005 0.060 0.060 0.048  1.966 2.006 2.043 

 3β̂  (i.e., 3δ̂ ) 3 3.014 0.060 0.061 0.049  2.975 3.017 3.054 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for X  
of which the boundary densities are zero, where 1 2 32 3Y X X X ε= + + +  for 

(0,1)Nε ∼ . 
      Coefficient estimates are divided by the absolute value of the sample mean of the first 

component, 1
ˆ| |δ . 
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[Table 2] Finite-sample Behavior of Estimators for Homoskedastic Binary Choice Model: 
Specification 1 

 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 8.587 8.576 6.529 -4.125 0.762 6.063 

 2β̂  (i.e., 2δ̂ ) 2 2.268 8.415 8.409 6.483 -3.198 1.832 7.634 

 3β̂  (i.e., 3δ̂ ) 3 3.316 8.433 8.429 6.432 -1.876 2.998 8.368 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 9.619 9.607 7.555 -4.936 0.839 7.268 

 2β̂  (i.e., 2δ̂ ) 2 2.242 9.591 9.582 7.625 -4.396 1.839 8.316 

 3β̂  (i.e., 3δ̂ ) 3 3.336 9.012 9.007 7.126 -2.593 3.513 8.983 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 13.351 13.334 10.515 -7.090 0.914 9.780 

 2β̂  (i.e., 2δ̂ ) 2 -0.078 13.594 13.735 10.959 -9.704 0.035 8.763 

 3β̂  (i.e., 3δ̂ ) 3 3.539 12.682 12.678 10.069 -5.018 4.119 11.481 

OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.183 0.183 0.146 0.880 1.010 1.124 

 2β̂  (i.e., 2δ̂ ) 2 2.024 0.171 0.172 0.139 1.908 2.032 2.137 

 3β̂  (i.e., 3δ̂ ) 3 3.000 0.184 0.184 0.146 2.886 3.000 3.133 

PROBIT 1β̂  (i.e., 1δ̂ ) 1 1.000 0.205 0.204 0.158 0.854 0.977 1.117 

 2β̂  (i.e., 2δ̂ ) 2 1.977 0.314 0.315 0.243 1.760 1.945 2.136 

 3β̂  (i.e., 3δ̂ ) 3 2.959 0.452 0.453 0.351 2.646 2.885 3.211 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for X  
of which the boundary densities are zero, where 1 2 31[ 2 3 0]Y X X X ε= + + + >  for 

(0,1)Nε ∼ . 
Coefficient estimates are divided by the absolute value of the sample mean of the first 
component, 1

ˆ| |δ . 
 

[Table 3] Finite-sample Behavior of Estimators for Heteroskedastic Linear Model: 
Specification 1 

 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 2.367 2.364 1.778 -0.344 0.980 2.390 

 2β̂  (i.e., 2δ̂ ) 2 1.874 2.423 2.423 1.822 0.395 1.926 3.284 

 3β̂  (i.e., 3δ̂ ) 3 2.937 2.557 2.554 1.954 1.236 2.785 4.343 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 2.686 2.683 2.033 -0.525 1.062 2.524 

 2β̂  (i.e., 2δ̂ ) 2 1.801 2.615 2.619 1.971 0.323 1.848 3.520 

 3β̂  (i.e., 3δ̂ ) 3 2.894 2.812 2.811 2.19 1.136 2.651 4.783 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 3.132 3.128 2.461 -1.011 0.975 3.085 

 2β̂  (i.e., 2δ̂ ) 2 1.750 3.055 3.061 2.348 -0.126 1.759 3.701 

 3β̂  (i.e., 3δ̂ ) 3 2.767 3.278 3.282 2.539 0.587 2.731 4.715 
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OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.170 0.170 0.128 0.898 1.000 1.088 

 2β̂  (i.e., 2δ̂ ) 2 1.973 0.076 0.081 0.064 1.925 1.969 2.019 

 3β̂  (i.e., 3δ̂ ) 3 2.966 0.098 0.103 0.080 2.904 2.964 3.027 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for X  
of which the boundary densities are zero, where 1 2 32 3Y X X X ε= + + +  for ε σ υ= ⋅ , 

( )Xσ σ= , and (0,1)Nυ ∼ . 
Coefficient estimates are divided by the absolute value of the sample mean of the first 
component, 1

ˆ| |δ . 
 

[Table 4] Finite-sample Behavior of Estimators for Heteroskedastic Binary Choice Model: 
Specification 1 

 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 10.950 10.936 7.907 -3.784 0.701 7.635 

 2β̂  (i.e., 2δ̂ ) 2 2.271 14.502 14.487 10.647 -5.484 0.085 9.538 

 3β̂  (i.e., 3δ̂ ) 3 3.409 18.967 18.948 14.161 -8.184 0.581 12.417 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 9.160 9.149 6.819 -3.810 0.935 6.832 

 2β̂  (i.e., 2δ̂ ) 2 2.219 12.986 12.972 9.866 -5.494 0.633 9.663 

 3β̂  (i.e., 3δ̂ ) 3 3.36 15.266 15.251 11.894 -6.637 1.701 12.521 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 18.649 18.626 14.142 -9.446 -0.191 12.127 

 2β̂  (i.e., 2δ̂ ) 2 2.464 19.667 19.648 14.917 -9.279 1.111 14.788 

 3β̂  (i.e., 3δ̂ ) 3 7.244 18.627 19.082 14.808 -5.327 5.339 17.821 

OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.208 0.208 0.164 0.865 1.008 1.133 

 2β̂  (i.e., 2δ̂ ) 2 2.192 0.181 0.264 0.221 2.077 2.196 2.312 

 3β̂  (i.e., 3δ̂ ) 3 3.290 0.192 0.347 0.298 3.158 3.286 3.422 

PROBIT 1β̂  (i.e., 1δ̂ ) 1 1.000 4.803 4.797 0.948 0.244 0.486 0.796 

 2β̂  (i.e., 2δ̂ ) 2 2.078 9.519 9.508 1.758 0.663 1.116 1.634 

 3β̂  (i.e., 3δ̂ ) 3 3.130 14.145 14.128 2.608 1.023 1.681 2.500 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for X  
of which the boundary densities are zero, where 1 2 31[ 2 3 0]Y X X X ε= + + + >  for 
ε σ υ= ⋅ , ( )Xσ σ= , and (0,1)Nυ ∼ . 
Coefficient estimates are divided by the absolute value of the sample mean of the first 
component, 1

ˆ| |δ . 
 
III.3.3. Specification 2: Boundary Densities Bounded away from Zero 
Tables 5 through 8 report the simulation results of ADEs and other parametric 

estimates for the second specification of regressors where the density of X  is 
bounded away from zero everywhere in the support. Note that SWADE is a 
consistent estimator for β  up to scale. PSSE and HSE are not asymptotically 
consistent under this setup because the coefficient vector cannot be identified unless 
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( ) 0f X =  at X d∈ Ω  where ( )f ⋅  is the density of X  and dΩ  denotes its 
boundary of the support.13 

As reported in Tables 5 through 8, almost all estimates are better-behaved in the 
second specification of regressors than in the first specification, except for the OLS 
estimates for binary choice models. For example, the absolute mean deviation of 
SWADE for 2β  for homoskedastic linear models in Table 5 is merely 0.057 (=2-
1.943); its corresponding value reported in Table 1 is 0.127 (=2.127-2). 
Furthermore, the former has smaller values of SD, RMSE, and MAE than the latter. 
This difference is probably because the density of X  is strictly positive everywhere 
in the support and, so, because the erratic behavior potentially caused by very small 
boundary densities is avoidable in this case. In terms of mean deviations from the 
prespecified parameter value (1,2,3) and all variability measures, the OLS estimates 
are best for linear models and the Probit estimates for binary choice models, just like 
in the first specification of X . All of the ADEs, of course, including HSE are also 
well-behaved without an exception in all combinations of models and errors. PSSE 
seems to outweigh SWADE and HSE among ADEs; its mean deviations are very 
similar to those of SWADE and HSE. However, the variability measures for PSSE 
are surely smaller than those of SWADE as well as HSE in all models and errors. 

Note that PSSE and HSE are not asymptotically consistent for β  in the second 
regressor specification unlike SWADE. However, it is remarkably surprising that 
the finite sample biases of PSSE and HSE are almost as small as those of SWADE. 
This is often probable. As reported in Table 2, the OLS estimates are sufficiently 
well-behaved with very small deviations from the prespecified parameter values 
under the first specification of zero boundary densities of regressors; of course, the 
OLS estimates are not consistent for homoskedastic binary choice models. The 
biases of PSSE and HSE from boundary terms in integration by parts do not 
asymptotically vanish unless ( ) 0f X =  at X d∈ Ω . However, the biases could be 
sufficiently small in some finite samples and sometimes comparable to those of 
consistent estimates such as SWADE; SWADE may encounter relatively large 
biases in finite samples, although the biases tend to vanish as the sample size 
increases to infinity. 

The simulation results for eight combinations of models, errors, and regressor 
specifications suggest that SWADE is sufficiently well-behaved with more relaxed 
and, thus, relaxed distributional specification of regressors in finite sample among 
ADEs. For the first four combinations in the first specification of zero boundary 
densities of regressors, SWADE outperforms HSE without density trimming in 
finite sample. The finite sample behavior of SWADE is slightly and weakly inferior 
____________________ 

13 This is because the boundary terms in the integration by parts formula for the derivatives of 
regression function do not vanish unless the zero boundary density condition is satisfied. Refer to 
Equation (2.1) and Assumption 2 of PSS (1989) and Equation (3.1) and the second assumption of 
Assumption A.1 of HS (1989). 
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in some models and almost equivalent to PSSE in some other models; however, the 
difference is negligibly small in most cases. For all models and errors under the 
second specification of regressors, all of ADEs compared in this paper have shown 
qualitatively similar performance. In this sense, all of them are more or less 
qualitatively equivalent in terms of absolute mean deviations from specified 
parameter values and various variability measures (SD, RMSE, MAE and quartile 
range). Although the finite sample behaviors of all ADEs are mutually similar, 
PSSE and HSE are biased and asymptotically inconsistent under this setup. 
SWADE is a consistent estimator. In this respect, SWADE is theoretically superior 
to PSSE and HSE. 

With these results for both specifications of regressors, SWADE is a sufficiently 
well-behaved consistent estimator for coefficient vector of interest under the single 
index models in finite sample. In particular, SWADE allows for wider applications 
of models and errors and, more importantly, more flexible distributional 
characteristics of regressors than other ADEs which require some restrictive 
conditions such as zero boundary densities in the support. In this sense, SWADE 
seems to behave appropriately in finite sample and relatively easier to apply without 
a concern of regressor specification. 

 
[Table 5] Finite-sample Behavior of Estimators for Homoskedastic Linear Model: 

Specification 2 
 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.444 0.443 0.352 0.692 1.001 1.294 

 2β̂  (i.e., 2δ̂ ) 2 1.943 0.502 0.505 0.408 1.602 1.914 2.260 

 3β̂  (i.e., 3δ̂ ) 3 2.962 0.559 0.560 0.445 2.591 2.914 3.336 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.351 0.351 0.283 0.749 0.999 1.241 

 2β̂  (i.e., 2δ̂ ) 2 1.944 0.397 0.401 0.324 1.665 1.936 2.201 

 3β̂  (i.e., 3δ̂ ) 3 2.971 0.403 0.404 0.325 2.701 2.976 3.253 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.498 0.498 0.392 0.674 1.015 1.318 

 2β̂  (i.e., 2δ̂ ) 2 2.013 0.520 0.519 0.425 1.646 2.019 2.390 

 3β̂  (i.e., 3δ̂ ) 3 3.038 0.531 0.532 0.423 2.702 3.068 3.393 

OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.056 0.056 0.045 0.960 1.001 1.039 

 2β̂  (i.e., 2δ̂ ) 2 2.011 0.056 0.057 0.045 1.973 2.011 2.046 

 3β̂  (i.e., 3δ̂ ) 3 3.005 0.056 0.057 0.046 2.962 3.004 3.046 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for 
X∗  of which the boundary densities are zero, where 1 2 32 3Y X X X ε∗ ∗ ∗= + + +  for 

(0,1)Nε ∼ . 
      Coefficient estimates are divided by the absolute value of the sample mean of the first 

component, 1
ˆ| |δ . 
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[Table 6] Finite-sample Behavior of Estimators for Homoskedastic Binary Choice Model: 
Specification 2 

 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.990 0.989 0.770 0.342 0.972 1.585 

 2β̂  (i.e., 2δ̂ ) 2 2.032 1.144 1.143 0.866 1.269 1.930 2.641 

 3β̂  (i.e., 3δ̂ ) 3 2.855 1.159 1.166 0.924 2.056 2.821 3.542 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.821 0.820 0.651 0.471 0.999 1.583 

 2β̂  (i.e., 2δ̂ ) 2 1.996 0.907 0.905 0.710 1.434 1.902 2.566 

 3β̂  (i.e., 3δ̂ ) 3 2.828 0.940 0.954 0.766 2.193 2.756 3.445 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 1.028 1.026 0.824 0.317 1.105 1.673 

 2β̂  (i.e., 2δ̂ ) 2 2.029 1.104 1.103 0.898 1.284 2.001 2.769 

 3β̂  (i.e., 3δ̂ ) 3 2.823 1.089 1.102 0.893 2.089 2.741 3.552 

OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.187 0.186 0.147 0.872 1.008 1.116 

 2β̂  (i.e., 2δ̂ ) 2 2.219 0.204 0.299 0.249 2.077 2.224 2.369 

 3β̂  (i.e., 3δ̂ ) 3 3.551 0.162 0.575 0.551 3.443 3.556 3.660 

PROBIT 1β̂  (i.e., 1δ̂ ) 1 1.000 0.215 0.215 0.167 0.845 0.988 1.116 

 2β̂  (i.e., 2δ̂ ) 2 2.023 0.333 0.333 0.251 1.785 1.980 2.191 

 3β̂  (i.e., 3δ̂ ) 3 3.026 0.473 0.473 0.354 2.679 2.963 3.262 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for 
X∗  of which the boundary densities are zero, where 1 2 31[ 2 3 0]Y X X X ε∗ ∗ ∗= + + + >  for 

(0,1)Nε ∼ . 
Coefficient estimates are divided by the absolute value of the sample mean of the first 
component, 1

ˆ| |δ . 

 
[Table 7] Finite-sample Behavior of Estimators for Heteroskedastic Linear Model: 

Specification 2 
 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.432 0.431 0.344 0.704 0.998 1.300 

 2β̂  (i.e., 2δ̂ ) 2 1.971 0.544 0.544 0.429 1.581 1.962 2.309 

 3β̂  (i.e., 3δ̂ ) 3 3.087 0.607 0.613 0.484 2.656 3.042 3.464 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.366 0.366 0.293 0.739 1.002 1.238 

 2β̂  (i.e., 2δ̂ ) 2 1.965 0.413 0.414 0.329 1.680 1.963 2.246 

 3β̂  (i.e., 3δ̂ ) 3 3.076 0.431 0.437 0.339 2.791 3.052 3.352 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.520 0.520 0.404 0.663 0.983 1.335 

 2β̂  (i.e., 2δ̂ ) 2 2.023 0.548 0.548 0.436 1.654 2.043 2.382 

 3β̂  (i.e., 3δ̂ ) 3 3.108 0.543 0.553 0.441 2.752 3.121 3.468 
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OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.070 0.070 0.053 0.956 0.999 1.042 

 2β̂  (i.e., 2δ̂ ) 2 1.996 0.082 0.082 0.065 1.938 1.992 2.049 

 3β̂  (i.e., 3δ̂ ) 3 2.989 0.078 0.079 0.061 2.941 2.988 3.036 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for 
X∗  of which the boundary densities are zero, where 1 2 32 3Y X X X ε∗ ∗ ∗= + + +  for 
ε σ υ= ⋅ , ( )Xσ σ= , and (0,1)Nυ ∼ . 

      Coefficient estimates are divided by the absolute value of the sample mean of the first 
component, 1

ˆ| |δ . 

 
[Table 8] Finite-sample Behavior of Estimators for Heteroskedastic Binary Choice Model: 

Specification 2 
 

  
TRUE MEAN SD RMSE MAE LQ Median UQ 

SWADE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.879 0.878 0.704 0.364 1.006 1.543 

 2β̂  (i.e., 2δ̂ ) 2 2.129 1.192 1.198 0.908 1.300 1.985 2.755 

 3β̂  (i.e., 3δ̂ ) 3 3.125 1.375 1.379 1.071 2.184 2.935 3.939 

PSSE 1β̂  (i.e., 1δ̂ ) 1 1.000 0.726 0.725 0.576 0.528 1.018 1.483 

 2β̂  (i.e., 2δ̂ ) 2 2.126 0.910 0.917 0.727 1.477 2.127 2.712 

 3β̂  (i.e., 3δ̂ ) 3 3.155 1.024 1.035 0.792 2.463 3.065 3.806 

HSE 1β̂  (i.e., 1δ̂ ) 1 1.000 1.033 1.031 0.814 0.379 1.038 1.700 

 2β̂  (i.e., 2δ̂ ) 2 2.134 1.070 1.077 0.857 1.351 2.147 2.829 

 3β̂  (i.e., 3δ̂ ) 3 3.127 1.163 1.168 0.935 2.265 3.137 3.908 

OLS 1β̂  (i.e., 1δ̂ ) 1 1.000 0.185 0.185 0.147 0.876 1.009 1.124 

 2β̂  (i.e., 2δ̂ ) 2 2.257 0.210 0.332 0.279 2.112 2.254 2.387 

 3β̂  (i.e., 3δ̂ ) 3 3.758 0.173 0.778 0.758 3.635 3.762 3.866 

PROBIT 1β̂  (i.e., 1δ̂ ) 1 1.000 0.484 0.484 0.368 0.671 0.938 1.228 

 2β̂  (i.e., 2δ̂ ) 2 2.063 0.912 0.913 0.679 1.453 1.916 2.512 

 3β̂  (i.e., 3δ̂ ) 3 3.176 1.325 1.335 0.987 2.291 3.012 3.795 

Notes: The simulations are repeated 400 times independently with the sample size of 300 for 
X∗  of which the boundary densities are zero, where 1 2 31[ 2 3 0]Y X X X ε∗ ∗ ∗= + + + >  for 
ε σ υ= ⋅ , ( )Xσ σ= , and (0,1)Nυ ∼ . 
Coefficient estimates are divided by the absolute value of the sample mean of the first 
component, 1

ˆ| |δ . 

 
 

IV. Conclusion 
 
This paper proposes a consistent estimator, δ̂ , of coefficient vector ( β ) up to 

scale under the single index model framework, using the average derivatives 
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estimation methods as in PSS (1989) and HS (1989), among others. The basic 
differences from their estimators are the weighting functions: 1 for HSE, ( )f X  
for PSSE, and 2( )f X  for squared density weighted average derivatives estimator 
(SWADE) proposed here. SWADE of δ  exhibits the standard properties of an 
i.i.d. sample average: N − consistency with an asymptotic normal distribution 
since the estimator can be approximated as a linear function (i.e., the average) of 
i.i.d. derivatives of conditional mean functions. 

An attractive feature of SWADE is that it is not necessary to assume that the 
regressors have zero density on the boundary in the support, which is required for 
PSSE or HSE. PSSE and HSE are often powerful and easy to apply in empirical 
studies, but sometimes restrictive in application for some cases particularly where 
the density of regressors is everywhere bounded away from zero in the support. In 
this case, PSSE and HSE which rely on zero boundary density conditions are not 
applicable. In addition, HSE requires density trimming to ensure N −  
consistency and an asymptotic normal distribution by avoiding erratic behavior of 
the estimates near the boundary in the support of regressors. Fortunately, however, 
SWADE introduces square density weighting and, so, requires no such restrictions. 
In this sense, SWADE is more widely applicable with fewer restrictions. 

SWADE proposed in this study is asymptotically equivalent in precision to other 
ADEs, that is, PSSE and HSE for example. Monte Carlo simulations indicate that, 
for all model/error specifications between linear and binary choice models and 
between homoskedastic and heteroskedastic errors, parametric regressions certainly 
outperform nonparameteric ADEs including SWADE in finite sample. Among the 
average derivatives estimators, the finite sample behavior of SWADE is slightly 
outweighed by that of PSSE in most cases except the heteroskedastic binary choice 
model in which the sample mean of SWADE is slightly closer to the true parameter 
value than that of PSSE. HSE is not sufficiently well-behaved in finite sample 
unlike other ADEs. 

These imply that SWADE allows more flexible applications with relaxed 
distributional characteristics than PSSE and HSE at the expense of slightly 
deteriorated behavior in finite sample. 
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Appendix A: Preliminary Lemmas 
 
Preliminary lemmas for the theorems are presented here. Lemma 1 gives useful 

techniques to reduce asymptotic bias of δ̂ . Lemmas 2 and 3 provide the 
projections of several U-statistics to derive the asymptotic distribution of δ̂ . 
Lemma 4 shows the uniform convergence rates of several nonparametric estimates. 

 
Lemma 1. If 1( )hu O=  and if ( )H ⋅  is ( 1) timesλ + −  continuously 
differentiable with bounded derivatives, 
(a) ( ) ( ) ( ) ( )K u H X uh du H X O hλ∫ − = + ,  
(b) 1 ( ) ( ) ( ) ( )h K u H X uh du H X O hλ− ∫∇ ± = ∇ +∓ . 

 
Proof: 
(a) For 1n N∈  and p < ∞ , define 1 1{( , , )| }p

np p m mR r r r n=≡ ∑ ="  and ( )nΠ ⋅ ≡  

1
1

( )p

rr p
p

H

u u

∂ ⋅

∂ ∂"
. By Taylor expansion of ( )H ⋅  around 0h = , 

 
( ) ( ) ( ) ( )K u H X uh du H X K u du∫ − = ∫  

1

( 1)

1
1 1( 1) ( ) ( )

!
p

m p

m
rrm

m m R p

h
X u u K u du

m
λ

+

−
=

⎛ ⎞
+∑ − Π ∫∑⎜ ⎟

⎝ ⎠
"  

1
1( 1) ( ) ( )

!
p

p

rr
R p

h
u u X uh K u du

λ

λ
λ

λλ
∗⎛ ⎞

+ − ∫∑ Π −⎜ ⎟
⎝ ⎠

"   

 
for some [0, ]h h∗ ∈ . The second term is zero and the last term is ( )O hλ  by 
Assumption 4. So, the above is ( ) ( )H X O hλ+ , since ( ) 1K u du∫ = . 

 
(b) 1 ( ) 0h K u− →  as 0h→  since 1( )u h−=  and ( ) 0K u u→  as u→±∞  by 
Assumption 4(d). Thus, by integrating by parts, the result follows as 

 

1 1( ) ( ) ( ) ( )
u

h K u H X uh du h K u H X uh
u

− − = +∞
∫∇ ± = ±

= −∞
 

1 ( ) ( )( )h K u H X uh h du−− ∫ ∇ ± ±  

0 ( ) ( )K u H X uh du= ∫ ∇ ±∓  

( ) ( )H X O hλ= ∇ +∓ .                                 by (a) 

 
Lemma 2. For { }iq  an i.i.d. sample, consider a modified m-th order U-statistic of 
the form 
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1

1

(̂ , , )
mN i i

N
U s q q

m

−
⎛ ⎞

= ∑⎜ ⎟
⎝ ⎠

"   

 
where the sum is taken over the ( )N

m  combinations of m distinct elements 

1( , , )mi i"  from the set (1, , )N"  for the “kernel” (̂ )s ⋅  symmetric in its m 
arguments. Define the “projection” as 

 

1
ˆ ˆˆ ˆ( ( ) )N

N i i

m
U r q

N
θ θ== + ∑ −   

 
where ˆ ˆ( ) [ ( )| ]i ir q E s q≡ ⋅  and ˆ ˆ[ ( )]iE r qθ ≡ . Then,  

 
if 2(̂ ) ( )E s o N⋅ = ,     (a) 1/2ˆ ( )N N pU U o N −= + , 

if 2
2

(̂ )
p

N
E s o

h +

⎛ ⎞⋅ = ⎜ ⎟
⎝ ⎠

,  (b) ˆ (1)N pU oθ= + . 

 
Proof: The result directly follows from Lemma 2.1 of Lee (1988) and Lemma A.3 of 
Ahn (1995). 

 
The next lemma shows projections of U-statistics related to δ̂ . Recall 

( ) ( ) ( )i i i i iZ X f X f Xδ ε= − ∇ . 
 

Lemma 3. Suppose that the estimator for the slope parameter of interest, that is, β  
(or, equivalently δ  in regression models specified in Equation (4)) is proposed as 
δ̂  defined in Equation (5). Then, 

 
1/2

1

3ˆ 2 ( )N
i i pZ o N

N
δ δ −

== ∑ − + . 

 
Proof: 
δ̂  can be written as 1 1/2

1
ˆ ˆ( ) ( , , ) ( )N

m i j k N i j ks q q q o Nδ − −
≤ < < ≤= ∑ +  for 3m = ; 

(̂ , , )i j ks q q q  is symmetric in its arguments. Observe that 
22ˆ (̂ , , )i j kE s E s q q q=  

(4 2)( ) ( )pO h o N− += =  since 4 2pNh + →∞  as N →∞ . Thus, by Lemma 2(a) for 
ˆ ˆ( )E sθ =  and ˆ ˆ( ) ( | )i ir q E s q= , 

 
1/2

1

3ˆ ˆ ˆ( | ) 2 ( ) ( )N
i i pE s q E s o N

N
δ −

== ∑ − + . 

 
Hence, it suffices to show that 1 2 3

ˆ ˆ ˆ ˆ( | ) ( | ) ( | ) ( | )i i i iE s q E s q E s q E s q= + + =  
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1/2( )iZ o N −+  and that 1/ 2ˆ( ) ( )E s o Nδ −= +  where 
 

2 1/ 2
1

1ˆ( | ) ( ) ( ) ( )
3i i iE s q f X G X o N −= ∇ +   

2 1/ 2
2 3

1 1ˆ ˆ( | ) ( | ) ( ) ( ) ( ) ( ) ( )
3 2i i i i i i iE s q E s q f X G X f X f X o Nε −= = ∇ − ∇ +   

so, 
2 1/ 2 1/ 2ˆ( | ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i iE s q f X G X f X f X o N Z o Nε − −= ∇ − ∇ + = +  

1/2 1/ 2ˆ( ) ( ) ( ) ( )iE s E Z o N o Nδ− −= + = + . 

 
Proofs for only 1̂( | )iE s q  and 2̂( | )iE s q  are presented below. The case for 

3̂( | )iE s q  can be shown similarly. For i jX X

h u
− =  and i kX X

h v
− = , 

 

1

1ˆ( | ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( )
6i i i iE s q K u K v K u K v G X uh f X uh f X vh dudv

h
= ∫ ∇ − ∇ − − −  

1
[ ( ) ( ) ( ) ( )] ( ) ( ) ( )

6 i i iK u K v K u K v f X uh G X vh f X vh dudv
h

− ∫ ∇ − ∇ − − −  

21
{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

6 i i i i i i i if X G X G X f X f X G X f X f X= ∇ + ∇ − ∇   

2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} ( )i i i i i i i iG X f X f X G X f X f X f X G X O hλ− ∇ + ∇ + ∇ +  

  by Lemma 1(a), (b) 
2 1/ 21
( ) ( ) ( )

3 i if X G X o N −= ∇ + .   1/ 2( ) ( )O h o Nλ −=  by Assumption 5. 

 

For j iX X

h u
− =  and j kX X

h v
− = , 

 

2

1ˆ( | ) ( [ ( ) ] ) ( ) ( ) ( ) [ ( ) ]
6i i i i iE s q G X u v h Y K v K u f X uh f X u v h dudv

h
= ∫ + − − ∇ + + −  

1
( [ ( ) ] ) ( ) ( ) ( ) [ ( ) ]

6 i i i iG X u v h Y K v K u f X uh f X u v h dudv
h

− ∫ + − − ∇ + + −  

21
{ ( ) ( ) ( ) ( ) ( ) ( ) ( )}

6 i i i i i i i if X G X G X f X f X Y f X f X= ∇ + ∇ − ∇   

21
{ ( ) ( ) 2 ( ) ( ) ( ) [ 2 ( ) ( )]} ( )

6 i i i i i i i if X G X G X f X f X Y f X f X O hλ− − ∇ − ∇ − − ∇ +

                                            by Lemma 1(a) and (b) 
2 1/ 21 1
( ) ( ) ( ) ( ) ( )

3 2i i i i if X G X f X f X o Nε −= ∇ − ∇ + .   ( )i i iY G X ε= + . 

 
Define ( ) ( | ) ( ) ( ) ( ) ( , )XYT X E Y X f X G X f X Yf X Y dY≡ = = ∫  and ( )N Xϕ ≡  

21
1 ( )i

p

X XN
i ihNh

K ε−
=∑  where ( , )XYf X Y  is a joint density of ( , )X Y . Note that 
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( )N Xϕ  is similar to ˆ ( )N Xϕ : the only difference between them is 2
iε  instead of 

2
îε . The following lemma shows uniform convergence rates of several estimators. 
 

Lemma 4. For a compact XX ⊂ ��  in which X ( ) 0Xinf f X∈ >�� , 

 
(a) 1 1/2

X
ˆ| ( ) ( )| (( ) )sup e p

X f X f X O N h− −
∈ − =��  

(b) 1 1/2
X

ˆ| ( ) ( )| (( ) )sup e p
X T X T X O N h− −
∈ − =��  

(c) 1 1/2
X

ˆ| ( ) ( )| (( ) )sup e p
X G X G X O N h− −
∈ − =��  

(d) 1 1/2
X| ( ) ( )| (( ) )sup e p

NX X X O N hϕ ϕ − −
∈ − =��  

(e) 1 2 1/ 2
X

ˆ| ( ) ( )| (( ) )sup e p
X f X f X O N h− + −
∈ ∇ −∇ =��  

(f) 1 2 1/2
X

ˆ| ( ) ( )| (( ) )sup e p
X T X T X O N h− + −
∈ ∇ −∇ =��  

(g) 1 2 1/2
X

ˆ| ( ) ( )| (( ) )sup e p
X G X G X O N h− + −
∈ ∇ −∇ =�� . 

 
Proof: (a), (b), and (c) follow from Theorem 3 of Collomb and Härdle (1986) or 
Lemma 1 of AM. Substituting 2

iε  for iY  into (b) implies (d) [cf. Corollary of 
AM]. (e) and (f) follow from (A.1b) and (A.1d) in the proof of Theorem 1 of Stoker 
(1991) (see pp. 109-110). (g) follows from the arguments below (notations 
abbreviated for simplicity): 

 

2 22 2

ˆ ˆˆ ˆ ˆ ˆ
ˆ| | ˆ ˆ ˆ ˆ

T T f T T f T T T f T f
G G

f f f ff f f f

⎛ ⎞ ⎛ ⎞∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇
∇ −∇ = − − − ≤ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. 

 
Hence, 

 
ˆ 1 ˆˆ| |ˆ ˆ
T T

Tf Tf
ff f f

∇ ∇
− ≤ × ∇ −∇

×  

1 ˆˆ(| | | | | | | |)ˆ f T T T f f
f f

≤ × × ∇ −∇ + ∇ × −
×

 

1 2 1/2(( ) )e pO N h− + −= ,                      by (a) and (f) 

and 
2

2 2
22

ˆˆ 1 ˆ ˆˆ| |ˆ ˆ
T f T f

T f f T f f
ff f f

∇ ∇
− ≤ × ∇ − ∇

×  

2

2 21 ˆ ˆˆ(| | | | | | | |ˆ f f T T Tf f f
f f

≤ × ∇ × − + × ∇ −∇
×
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2 2ˆ| | | |)T f f f+ ∇ × −  
1 2 1/2(( ) )e pO N h− + −= ,               by (a), (b) and (e) 

 
since all derivatives are bounded and 2 2ˆ ˆ ˆ| | | | | |f f f f f f− = − × + . 

 
 

Appendix B: Proofs of Theorems 
 

Proof of Theorem 1: 
The first term 3

1
N
i iN Z=∑  of δ̂  in Lemma 3 is an i.i.d. average and 

ˆlim [ ( )] 0
N

E N δ δ
→∞

− =  and ˆlim [ ( )] 9 ( ) 9
N

Var N Var Zδ δ
→∞

− = = Σ . Therefore, the 
results follow by the Lindeberg-Levy Central Limit Theorem. 

 
Proof of Theorem 2: 
(i) By Lemma 4(a) and (e), ˆ( )f X  and ˆ( )f X∇  are uniformly consistent to 

( )f X  and ( )f X∇ , respectively. 
(ii) 1 1/ 2ˆˆ| | | ( )| (( ) ) (1)e psup sup G G X O N h oε ε − −− = − = =  by Lemma 4(c). 
(iii) By the triangular inequality, 

 
ˆ ˆ| ( ) ( )| | ( ) ( )| | ( ) ( )|N Nsup X X sup X X sup X Xϕ ϕ ϕ ϕ ϕ ϕ− ≤ − + −  

 
Hence, ˆ| ( ) ( )| (1)sup X X oϕ ϕ− =  since 1 1/ 2| ( ) ( )| (( ) )e p

Nsup X X O N hϕ ϕ − −− =  
(1)o=  by Lemma 4(d) and 

 

2 2
1

1ˆ ˆ| ( ) ( )| ( )N i
N i i ip

X X
sup X X K

Nh h
ϕ ϕ ε ε=

−⎛ ⎞− ≤ ∑ −⎜ ⎟
⎝ ⎠

 

ˆ ˆ| ( )| | | | |p
i i i ih sup K sup supε ε ε ε−≤ ⋅ × − × +   

1 1/2(1) (( ) ) (1)p e ph O O N h O− − −= × × ×  
1 3 1/2(( ) ) (1)e pO N h o− −= × .                  by (ii) 

 
(iv) 2ˆ ˆ ˆ( ) ( ) ( )X f X G Xδ = ∇  is uniformly consistent for 2( ) ( ) ( )X f X G Xδ = ∇ , since 
ˆ( )f X  and ˆ( )G X∇  are uniformly consistent for ( )f X  and ( )G X∇  by Lemma 

4(a) and (g), respectively. To verify this, consider 
 

2 2ˆ ˆ ˆ| ( ) ( )| | ( ) ( ) ( ) ( )|X X f X G X f X G Xδ δ− = ∇ − ∇  
2 2 2 2ˆ ˆ ˆ ˆ| ( ) ( ) ( ) ( )| | ( ) ( ) ( ) ( )|f X G X f X G X f X G X f X G X≤ ∇ − ∇ + ∇ − ∇  
2ˆ ˆ ˆ| ( )| | ( ) ( )| | ( )| | ( ) ( )|f X G X G X G X f X f X≤ × ∇ −∇ + ∇ × −  

ˆ| ( ) ( )| (1)f X f X o× + = .  



Myung Jae Sung: Square Density Weighted Average Derivatives Estimation of Single Index Models 327 

By (i) through (iv), Σ̂  is consistent for Σ : 
 

1 1

1 1ˆ ˆ ˆˆ[ ( ) ( ) ( ) ( ) ] [ ( ) ( ) ( ) ( ) ]N t N t
i i i i i p i i i i iX f X f X f X X f X f X f X

N N
ϕ ϕ= =∑ ∇ ∇ → ∑ ∇ ∇  

[ ( ) ( ) ( ) ( ) ]t
SLLN i i i iE X f X f X f Xϕ→ ∇ ∇   

and 

1 1

1 1ˆ ˆ[ ( ) ( ) ] [ ( ) ( ) ]N t t N t t
i i i p i i iX X X X

N N
δ δ δδ δ δ δδ= =∑ − → ∑ −  

[ ( ) ( ) ]t t
SLLN i iE X Xδ δ δδ→ − ,  

 
so, Σ̂ → Σ . 

 
 

Appendix C: Additional Monte Carlo Simulations 
 
Here, finite sample behaviors of ADEs are investigated for a higher dimension of 

regressors, 3p = , under a linear model with a homoskedastic error having smaller 
variance, compared with those of regressors. Consider a case in which random 
numbers for ( , )X ε  of size five hundred are independently drawn from normal 
distributions, such that (0,1)jx N∼  for 1,2,3j =  and 2(0,0.02 )Nε ∼  where 

1 2 3( , , )X x x x= . A slightly larger sample size is chosen here than the cases discussed 
in Section III.3. Let the following equation be the relation between Y  and other 
variates: 

 

1 2 32 3Y x x x ε= + + + . 

 
The same higher order Gaussian kernel is used as in Section III.3 except for some 

parameter and bandwidth values: set 1λ =  for 3p =  by Assumption 2 and 
1/15

Nh cN −=  for some constant c . Without loss of generality, let 1c = . 
Simulations are independently repeated a thousand times to construct empirical 
distributions of the aforementioned PSSE, HSE, and SWADE. 

Just like those in Section III.3, the average derivatives estimates are rescaled by 
dividing them by the average value of the first component of the parameter 
estimates for simplicity of comparison. This is shown in the third block in Table A.1. 
The first and the second blocks in Table A.1 present the original estimates as well as 
the estimates rescaled by their own first component estimates, respectively. 

As shown in Table A.1, all of the three methods of average derivatives estimators 
yield similar results: the average values of parameter estimates are very close to the 
true parameter value, (1,2,3), and the biases are negligible, regardless of estimators. 
However, the standard deviations of the estimates are slightly different over the 
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three estimators. HSE has the largest standard deviations (0.415,0.447,0.512), 
SWADE has the smallest (0.309,0.377,0.484), and those of PSSE are in-between 
(0.345,0.397,0.472). HSE is outweighed by SWADE and PSSE in terms of standard 
deviations. The differences of standard deviations between SWADE and PSSE are 
seemingly significant in the statistical sense for the first and the second elements: 
those of SWADE are smaller than PSSE. The inequality direction is reversed for 
the standard deviation of the third elements between the two; however, the 
difference is not as large, 0.484 (SWADE) versus 0.482 (PSSE). From the results of 
simulations, SWADE is mostly preferable in finite sample in the above setup, to the 
extent that the standard deviations of the estimates are concerned, although its 
precision is asymptotically equivalent to PSSE and HSE.  

In what follows, the simulation results discussed above are briefly compared with 
those in Section III.3. The standard deviation of error term is assumed to be much 
smaller in this section (0.02) than those (1) of homoskedastic linear and binary 
choice models in Section III.3. Other differences are the dimension of regressors 
and sample size. 

The most noticeable difference in simulation results is the signs of HSE 
estimates; the sample means of HSE estimates are all negative in Section III.3, but 
all positive here. The drastic change in the signs of HSE estimates may be caused by 
the significantly different levels of error variance. A larger variance may inflate the 
biases stemming from larger variations from error terms. 

Another noticeable change can be found in the behavior of SWADE. It behaves 
more nicely under the linear model with smaller error variance, and less nicely 
under the models with larger error variance. SWADE is slightly outweighed by 
PSSE in most cases under the models with larger error variance. However, they are 
almost equivalent in terms of finite sample behavior under the model with smaller 
error variance. From this, we can infer that the precision of SWADE in finite 
sample may be blurred by the increased variations in error terms. Variations in error 
terms are often sensitive to model specifications or choice of regressors. In this sense, 
despite its advantages over distributional constraints, SWADE could be relatively 
more sensitive or vulnerable, for example, to omitted variables than PSSE. 

However, the above discussion is indeterminate and needs more thorough 
investigation to confirm. Because the results can be case-dependent, this question is 
left for a further study. 
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[Table A.1] Monte Carlo Simulation Results: Comparison of Average Derivatives Estimates 
 

Original Estimates ( δ̂ ) 

 
Averages Std. Deviations 

Estimates 1δ  2δ  3δ  1δ  2δ  3δ  

SWADE 0.0115 0.02298 0.03439 0.00355 0.00433 0.00557 
PSSE 0.0223 0.04483 0.06704 0.00769 0.00886 0.01052 
HSE -0.04011 -0.08066 -0.11962 0.01665 0.01794 0.02054 

Estimates Normalized by Each of the First Elements ( 1
ˆ ˆ/δ δ ) 

 
Averages Std. Deviations 

Estimates 1δ  2δ  3δ  1δ  2δ  3δ  

SWADE 1 2.19086 3.26875 0 0.83409 1.16137 
PSSE 1 2.18964 3.27996 0 2.83231 3.99792 
HSE 1 3.88982 6.45238 0 28.06116 59.81803 

Estimates Normalized by the Average of the First Element Estimates ( 1
ˆ ˆ/ ( )Eδ δ ) 

 Averages Std. Deviations 

Estimates 1δ  2δ  3δ  1δ  2δ  3δ  

SWADE 1 1.99794 2.99025 0.30885 0.37655 0.48444 
PSSE 1 2.01006 3.00613 0.34502 0.39749 0.47189 
HSE 1 2.01089 2.98235 0.41514 0.44715 0.5122 

Note: The simulations are repeated 1,000 times independently with the sample size of 500. 
The true model is 1 2 32 3Y x x x ε= + + + . That is, 1 2 3( , , ) (1,2,3)δ δ δ = . 
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