
295 

The Korean Economic Review 
Volume 32, Number 2, Winter 2016, 295-329. 

Semi-parametric Method for Estimating Tail 
Related Risk Measures in the Stock Market 

Hojin Lee* 

The generalized Pareto distribution (GPD) approach for estimating the Value-at-Risk 
(VaR) and the expected shortfall (ES) is compared to other methods for evaluating extreme 
risk with normally distributed returns. When the market index returns have a fat-tailed 
distribution, the risk measures computed from the normal distribution underestimate the 
tail-related risk. We also compare the computation results of the VaR based on the GPD 
approximations to those based on the RiskMetrics methodology and GARCH model 
estimation. The estimates of the VaR are robust to a variety of threshold values. Contrary to 
this, the VaR values based on the RiskMetrics methodology and the GARCH model are 
extremely volatile. From a risk manager’s perspective, it would be difficult to adjust capital 
requirement of a financial institution to conditional market risk. Due to concerns raised for 
practical and statistical reasons, we can conclude that the GPD method for measuring 
unconditional market risk is more appropriate for measuring and managing the tail-related 
risk. 

 
JEL Classification: G15, F31, C46 
Keywords: Generalized Extreme Value Distribution, Fat-tail Behavior, Value-at-Risk, 

Expected Shortfall, Generalized Pareto Distribution, Fisher-Tippett 
Theorem 

 

8 
I. Introduction 

 
A traditional approach to measuring risk is based on the assumption of marginal 

and multivariate distribution of normality and linear dependency among the 
variables. Traditional methods derive the empirical density functions with 
observations heavily distributed around the center but sparsely distributed on both 
tails of the distribution. However, a large body of literature accumulates evidences 
of non-normality of the distribution and the time-varying correlation of portfolio 
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returns. The extreme value theory (EVT) can be used in deriving the limiting 
distribution of fluctuating maxima or the excesses over a high threshold, so that we 
may fit the limiting distribution to the sparsely distributed observations in the tails. 
In light of the consideration, this paper investigates the limiting distribution of tails 
when traditional parametric and nonparametric estimation methodologies are 
inefficient due to scarce observations. The EVT estimator is used to estimate the tail 
probability and extreme quantile of the extreme random variable distribution that 
are required in measuring and managing the risk associated with extreme events.  

The extant literature exploits the extreme value theory in finance and 
econometrics. Akgiray et al. (1988) analyze exchange rate returns and test for the 
infinite variance stable law hypothesis under the assumption that the outliers of the 
returns are distributed to the stable Paretian laws. Koedijk et al. (1990) employ 
extreme value theory to estimate the tail index and show that exchange rate returns 
have a fat-tailed distribution. Hols and de Vries (1991) employ nonparametric 
procedures based on order statistics to estimate the tail index and derive bounds on 
the exchange rate returns for very low probabilities. Jansen and de Vries (1991), 
pursuing the same strategy with extreme value theory, investigate the probability 
mass in the tails of stock returns and prove the existence of finite first and second 
moments. Loretan and Phillips (1994) estimate the tail index and determine the 
asymptotic distribution to test for the covariance stationarity of stock returns. 
Longin (1996) shows that an extreme movement of the U.S. market index has a 
Fréchet distribution. Kearns and Pagan (1997) present the simulation evidence on 
the need to allow for modeling dependence structure in the data when calculating 
risk with the significant probability of large deviations. Booth et al. (1997) use 
extreme value theory to extrapolate the probability of large deviations in stock index 
futures market and set the margin levels. Danielson and de Vries (1997) improve 
upon the efficiency of the tail index and quantile estimator by incorporating an 
estimate of the second order term of the tail expansion with high frequency foreign 
exchange rate data. McNeil and Saladin (1997) advocate the peaks over thresholds 
model to estimate high quantiles of loss severity distributions. McNeil (1998) 
compares the block maxima method for estimating the GEV with the excesses over 
threshold estimator via simulation. To be fair, his simulation experiment is based 
on the same number of observations. The block maxima procedure outperforms the 
excesses over threshold procedure on all criteria. Longin (2000) derives the limiting 
distribution of extreme returns based on extreme value theory and computes the 
Value-at-Risk (VaR). Dacorogna et al. (2001) shows that the high frequency data 
improve the efficiency of the tail shape estimators when the loss distribution exhibits 
power decline and that the heavy tails of the return distribution improve the 
portfolio diversification effect. With regard to modeling dependence structure in the 
data when calculating risk, Longin and Solnik (2001) and Ang and Chen (2002) 
investigate the effect of asymmetries in conditional correlations on risk management 
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by differentiating downside correlations from upside correlations. Oh (2005) uses 
the two stage subsample bootstrapping method to select an optimal threshold and 
estimate the generalized Pareto distribution (GPD) model. It is found that the GPD 
model with an optimal threshold value produces superior VaR estimates to those 
from the generalized extreme value (GEV), the AR-GARCH and the RiskMetrics 
models. Tastan (2006) utilizes multivariate generalized autoregressive conditional 
heteroskedasticity model to explain the time varying nature of unconditional 
covariance between stock market index returns and nominal exchange rate changes. 
Hsu et al. (2012) integrate extreme value theory and a variety of copula distribution 
functions to search for an accurate fit to joint distribution of returns and compute 
VaR. 

This paper aims to quantify the tail-fatness and evaluate the tail-related risk 
measures from the parameter estimates of the limiting distribution of the tails. We 
focus on modeling the heavy tails of the loss distribution. The EVT based approach 
offers the fully parametric methods of block maxima for estimating the tail of a loss 
distribution. It provides us with a rationale behind the statistical methodology with 
which we extrapolate beyond the range of the data. We are particularly interested in 
the excesses over a high threshold method. In the excesses over a high threshold 
model, we fit the GPD to the threshold excesses. Accordingly, the choice of an 
optimal threshold may be a critical issue. Goldie and Smith (1987), Hall (1990), 
Danielsson et al. (2001), Danielsson and de Vries (1998) and Oh (2005) employ a 
subsample bootstrap procedure to determine the optimal threshold value. McNeil 
and Saladin (1997), McNeil and Frey (2000) and Zivot and Wang (2006), on the 
other hand, suggest choosing the optimal number of extreme order statistics by the 
sample mean excess function plot. The main concern in implementing the 
maximum likelihood estimation of the GPD parameters is to choose a high 
threshold because a statistical procedure for selecting the optimal threshold remains 
arbitrary to some extent. We can minimize the bias of the GPD parameter estimates 
by choosing a high threshold. In theory, it is best to fit the GPD to the data solely 
pertained to the tail of the distribution and not included in the center of the 
distribution. At the same time, however, we want to reduce the variance of the 
parameter estimates by keeping the number of observations included in the tail 
shape and scale parameter estimation large enough to have a sufficient number of 
exceedances of the losses over a high threshold. In this paper, we follow the sample 
mean excess methodology to see if the sample mean excess plot can provide us with 
the appropriate answer to selecting the optimal threshold. 

Our contributions to these findings are as follows. Firstly, we derive the GEV 
distribution of the index returns on four stock market indices from the block 
maxima. Armed with the parameter estimates of the GEV distribution, we compute 
the return level from the estimated model. In our context of block maxima, the 
return level indicates a level of return which is exceeded by a block maximum return 
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with a certain level of probability and can be interpreted as a risk measure. We 
investigate the trade-off relationship between the bias and the efficiency of the MLE 
method in estimating the GEV distribution using block maxima. We choose the 
number of observations per block to have the annual block maxima, the semester 
block maxima, the quarterly block maxima, the monthly block maxima and the 
weekly block maxima, respectively. The tail shape parameter estimates of the 
market indices with a variety of block maxima are consistent for the KOSPI and the 
NIKKEI 225. For the S&P 500 and the FTSE, the estimates have a tendency to 
increase with the number of observations in the block. For most indices, the tail 
shape parameter estimates with the weekly block maxima have negative values with 
large standard errors. In sum, we find that the tail shape parameter estimates of the 
GEV distribution with the block maxima are robust to the choice of the number of 
observations per block.  

Secondly, we approximate the EVT distribution of the excesses over a high 
threshold by the GPD methodology to obtain efficient parameter estimates of the 
model. We balance between minimizing the bias of the GPD parameter estimates 
by choosing a high threshold and reducing the variance of the parameter estimates 
by including a sufficient number of exceedances over a high threshold in the tail. 
We investigate the GPD specifications across a variety of threshold values. We set 
the initial value of the threshold as zero for the GPD model. We then increase the 
threshold value consecutively to reach the point where the model estimation 
contains less than 1% of the total observations. The tail shape parameter estimates 
of the GPD are relatively constant across a variety of threshold values. We agree that 
the two stage subsample bootstrapping method to select an optimal threshold as in 
Danielsson and de Vries (1998) and Oh (2005) is statistically rigorous and efficient. 
However, we find that the sample mean excess function methodology to choose a 
high threshold can also be useful.  

Thirdly, we use a semi-parametric method for estimating the market risk from an 
unconditional return distribution. We combine a parametric assessment of the VaR 
with the fitted tail distribution to form a semi-parametric evaluation of the VaR. By 
sampling from the tail of the distribution, the level of statistical precision is elevated 
in evaluating the VaR. We employ the GPD model to estimate the tail probability 
and the extreme quantile of the distribution that are required in measuring and 
managing the risk associated with extreme events. We compare the computation 
results of the VaR based on the GPD approximations to those based on the 
RiskMetrics methodology and the GARCH model estimation. The robustness test 
results of the VaR estimates based on the GPD specification are established. 
Contrary to this, the VaR values based on the RiskMetrics methodology and the 
GARCH model are extremely volatile. We conclude that the GPD method for 
measuring unconditional market risk is appropriate for measuring and managing 
the tail-related risk. 
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The rest of the paper is organized as follows. Section 2 discusses the limiting 
distribution of extreme random variables. We discuss the extreme value theory 
method for estimating the limiting distribution from the block maxima data. We 
then present an alternative extreme value theory procedure for estimating the 
limiting distribution from the excesses over a high threshold. We also discuss a 
parametric assessment of the risk measures with the fitted tail distribution to form a 
semi-parametric evaluation of the VaR and the ES. In section 3, we present the 
empirical results. Section 4 concludes our discussion. 

 
 

II. The Model 
 

2.1. The GEV Distribution 
 
We discuss the distribution of the extreme losses on the stock market index. The 

probability mass in the tails is used more effectively in extrapolating from historical 
events to unprecedented levels by discarding the observations in the center of the 
distribution. As the first approach to extrapolating the empirical distribution of the 
maximum order statistic, we derive the limiting distribution of location-scale 
adjusted maxima.  

From the iid sequence of extreme random variable , 1,2,iX i T= ¼  with a 
cumulative distribution function F , we define iX  as daily observations of the 
negative log return on the stock market index. We define ( )

1( , , )j j j
n nM max X X= L , 

1, ,j m= L  and /n T m=  as the block maxima from m  subsamples. The limit 
law for fluctuating maxima due to the Fisher and Tippett (1928) theorem states that 
the normalized maxima is distributed to the GEV distribution with the tail shape 
parameter x  and the location-scale parameter nm  and ns  as in equation (1) 
(Embrechts et al., 1997; Coles, 2001; Zivot and Wang, 2006). The 1-month period is 
chosen for the block size n , so we have 7,352

350 21n = =  observations in each block 
and 350 monthly block maxima from the sample.  

The form of the GEV ( )H xx  is:  
 

1

exp{ (1 ) } 0( )
exp{ exp( )} 0

xH x
x

x

x
x x

x

-ìï - + ¹
í

- - =ïî
  

where, 1 0xx+ > . (1) 

 
The tail shape parameter x  differentiates the limiting distribution of block 

maxima, so that 0x >  corresponds to the Frechét distribution, 0x =  to the 
Gumbel distribution, and 0x <  to the Weibull distribution.  

The form of the location-scale normalized GEV distribution , ,Hx m s  is:  
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where the extreme random variable x  is normalized by the location-scale 
parameters RmÎ , 0s > . The Fisher-Tippet theorem states that there exist 
norming constants m  and 0s >  such that the standardized maxima tend to the 
GEV distribution. 

Out-of-sample forecast of the probability of observing a new record negative 
return at the 1-period horizon is made from the estimates of the tail shape 
parameter and the norming constants. We also forecast the loss quantiles at 
different risk levels which is exceeded by the maximum loss at the 1-period horizon 
with a given level of probability. 

 
2.2. The GPD Function 

 
Since the block maxima are selected from m  disjoint blocks of n  observations 

and used for the GEV distribution estimation, most of the information contained in 
the full sample of data is ignored. When we aggregate a set of data by calendar 
months into m  blocks of approximately n  days in each block, we discard 1n-  
observations in each block which may cause the efficiency problem of the block 
maxima estimation of the GEV distribution parameters. As an alternative approach 
to estimating the tails of the loss distribution, we use the limiting distribution of 
threshold excesses.  

We fix a high threshold u  and denote a random number un  as the number of 
exceedances of ( 1, , )i uX i n= K  over the threshold u . According to Embrechts et. 
al. (1997), McNeil and Saladin (1997), McNeil and Frey (2000) and Zivot and 
Wang (2006), it is possible to approximate the distribution of the excesses over a 
high threshold u  by a generalized Pareto distribution (GPD) (3) with a positive 
tail shape parameter x  and a positive measurable scale function ( )ub  
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defined for 0x ³  when 0x ³  and 0 ( ) /x ub x£ £ -  when 0x < .  

The GPD approach is operable with an optimal threshold over which we have 
enough observations to obtain efficient parameter estimates of the model. At the 
same time, care must be taken to select a high threshold to minimize the bias of the 
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GPD parameter estimates. From a statistical viewpoint, the impediment in 
implementing the maximum likelihood estimation of the GPD parameters is to 
choose a high threshold because a statistical procedure for selecting the optimal 
threshold remains arbitrary to some extent. We can minimize the bias of the GPD 
parameter estimates by choosing a high threshold. In theory, it is best to fit the GPD 
to the data solely pertained to the tail of the distribution and not included in the 
center of the distribution. At the same time, however, we want to reduce the 
variance of the parameter estimates by keeping un  large enough to have a 
sufficient number of exceedances of X  over a high threshold. McNeil and Saladin 
(1997) suggest the sample mean excess function method for selecting the optimal 
number of extreme order statistics to be determined by the start of the tail u . 

The form of the sample mean excess function ( )ne u  is: 
 

1

1
( ) ( )un

n i i
u

e u X u
n == å -   (4) 

 

where ( 1, , )i uX i n= K  are the values of iX  such that iX u> . 
We follow the interpretation of the mean excess function plot due to McNeil and 

Saladin (1997) and Zivot and Wang (2006), among others. We base our decision on 
the GPD with a positive scale function and a tail shape parameter by the linearity of 
the sample mean excess function plot. That is, we may choose a threshold value of 
u  over which the excesses are distributed to a GPD if the sample mean excess 
function plot is linear with positive slope. This can be seen from the form of the 
mean excess function equation that the sample mean excess is linearly correlated 
with a threshold value of u  for a fixed value of x  as follows. 

 

0( )
( ) [ | ]

1
u u

e u E X u X u
b x

x
+

= - > =
-

 

 

We define the extreme order statistics above a high threshold u  from the first to 
the th

un  as (1) ( ), ,
unX XK  and the threshold excesses as ( )i iy X u= -  for 

1, , ui n= K . The threshold excesses 1[ , , ]
uny yK  are distributed to a GPD with 

unknown parameters x  and ( )ub . For a sufficiently high threshold u , the form 
of the tail distribution or the distribution of iX  for which 0iX u- >  is:  

 

, ( )1 ( ) (1 ( ))(1 ( )) (1 ( ))(1 ( ))u uF x F u F y F u G yx b- = - - » - -   (5) 

 
where we define the excess distribution above the threshold u  as ( )uF y , and for a 
sufficiently high threshold u , , ( )( ) ( )u uF y G yx b» . 

Since the number of exceedances of iX  over a high threshold u  in the tail is 

un , 1 ( )F u-  in equation (5) may be estimated non-parametrically using the 
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empirical CDF as un
n . If we rearrange equation (5), the tail estimator is obtained as 

follows: 
 

1
ˆ

ˆ(̂ ) 1 1
(̂ )

un x u
F x

n u

x
x

b

-
æ ö-

= - + ×ç ÷
è ø

   for x u>   (6) 

 

where x̂  and (̂ )ub  denote the maximum likelihood estimates of x  and ( )ub , 
respectively. The semi-parametric estimation of the tails of the loss distribution is 
obtained using the non-parametric estimate of the random proportion of the data 
and the GPD function of estimating the tails of the loss distribution.  

 
2.3. Market Risk Measures 

 
The aim of the VaR analysis lies in the accurate forecasting of extreme events. 

Danielsson and de Vries (1997) propose a semi-parametric method for estimating 
the market risk from an unconditional return distribution. McNeil and Frey (2000), 
on the other hand, suggest applying an extreme value theory to estimate the tail of 
the fitted GARCH residual which is assumed to be a conditional return distribution. 
However, GARCH models are known to have poor tail properties and are not 
designed to evaluate the VaR. From a risk manager’s perspective, it would be 
difficult to adjust the capital requirement of a financial institution to conditional 
market risk. The use of a conditional return distribution also raises concerns related 
to constructing conditional variance-covariance measures when a portfolio is 
composed of a large number of assets. Due to the concerns raised for practical and 
statistical reasons, we use a tail-focused semi-parametric method for measuring 
unconditional market risk.  

In this paper, we combine a parametric assessment of the VaR with the fitted tail 
distribution to form a semi-parametric evaluation of the VaR. By sampling from the 
tail of the distribution, the level of statistical precision is elevated in evaluating the 
VaR. Depending on the characterization of the probability distribution function 

( )F × , we use different methods for evaluation of the VaR. In a parametric 
assessment of VaR, for 0 1a< < , a 100 %a×  quantile of the distribution function 
F  is the value qa  which satisfies 

 

inf{ : ( ) }q x R F xa a= Î ³ , 
 

For ( )q F ua > , the form of the EVT estimate of VaR is calculated by inverting 
the tail estimator in equation (6) to get 

 

·
ˆ

(̂ )
(1 ) 1ˆ

u

u n
VaR u q

n

x

a a
b
x

-ì üé ùï ï= + - -í ýê ú
ë ûï ïî þ

  (7) 
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If the loss distribution function has fatter tails than the normal distribution, the 
100 %a× quantile of the normal distribution could be misleading and 
underestimate the EVT estimate of the risk measures. When the unconditional 
return distribution has a heavy tail on the downside risk, the estimates of the 
extreme quantile based on the excesses over a high threshold procedure are more 
accurate.  

As another frequently examined risk measure, the ES  is calculated as the 
conditional expectation of the losses X  given that X  is greater than VaRa . 
Also, the form of the EVT estimate of the ESa  is related to VaRa  via 

 
[ | ]ES VaR E X VaR X VaRa a a a= + - >   (8) 

 
We compute the ESa  as the conditional expectation of the threshold excesses 

( )VaRF y
a

 given that X  is greater than VaRa . The GPD approximation to 
( )VaRF y

a
 has the shape parameter x  and the scale parameter ( ) ( )u VaR uab x+ - . 

Consequently, using (7) 
 

( ) ( )
[ | ]

1

u VaR u
E X VaR X VaR a

a a
b x

x
+ -

- > =
-

  (9) 

 
provided 1x < . According to Zivot and Wang (2006), the GPD approximation to 

qES  is derived by combining (9) with (7) and substituting into (8). 
 

¶ · ˆ ˆ( )
ˆ ˆ1 1

VaR u u
ES a

a
b x

x x
-

= +
- -

  (10) 

 
 

III. Empirical Results 
 

3.1. Data 
 
Figure 1 shows the daily closing prices and the continuously compounded 

returns on the KOSPI, S&P 500, FTSE, NIKKEI during the period from January 
1985 to February 2014 (7,352 observations). From the descriptive statistics reported 
in Table 1, while the distribution of the index returns on the S&P 500, FTSE and 
NIKKEI have long tail to the left, the distribution of the KOSPI returns has long 
tail to the right. The return distributions have fatter tails than the normal 
distribution in all four stock market indices. The Jarque-Bera statistics for normality 
test result in rejecting the null hypotheses in all cases under the 1% significance 
level. The mean values of the continuously compounded returns are less than a 
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tenth of a percentage and follow the martingale process. 
 

[Table 1] Statistical summary of index returns 
(%) 

 
Minimum 25% quantile Median 75% quantile Maximum 

KOSPI -12.02 -0.77 0.04 0.85 11.95 

S&P 500 -20.47 -0.46 0.06 0.57 11.58 

FTSE -12.22 -0.53 0.06 0.63  9.84 

NIKKEI -14.90 -0.70 0.04 0.75 14.15 

 
Mean 

Standard 
deviation 

Skewness Kurtosis 
Jarque-Bera 

p-value 

KOSPI 0.04 1.68 0.04  7.92 0.00 

S&P 500 0.04 1.16 -0.84 24.34 0.00 

FTSE 0.03 1.11 -0.21 11.09 0.00 

NIKKEI 0.01 1.47 -0.08 10.75 0.00 

Note: The table reports descriptive statistics of the four index returns. The Jarque-Bera test for 
normality reports the p-values. 

 
[Figure 1] Daily prices and log returns on the stock market index from 1985.1 to 2014.2 
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Daily Returns on the KOSPI 1985.1 - 2014.2
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3.2. The GEV Distribution Estimation 

 
We fit the GEV distribution in equation (2) to the m  independent realizations 

of the block maxima random variable (1) ( ){ , , }m
n nM MK . The 1-month period is 

chosen for the block size n , so we have 7,352
350 21n = =  observations in each block 

and 350 monthly block maxima from the sample. It is important to balance between 
having a sufficiently large number of observations n  per block to correct for the 
bias of the MLE and not having too meagre number of maxima m  to increase the 
efficiency of the MLE. The estimation results are provided in Table 2. Although the 
main concerns of the study are the calculations of the tail probabilities and the 
extreme quantiles, we also put our emphasis on the estimation of the parameters of 
the limiting distribution of extreme random variables. Since the influential works of 
Koedijk et al. (1990), Hols and de Vries (1991), Jansen and de Vries (1991), Loretan 
and Phillips (1994) and Longin (1996), the tail index estimate of x  is used to 
determine the asymptotic distribution of financial time series and to test for the 
existence of finite moments. What we can read off from the results in Table 2 is that 
the tail index estimates of x  in four stock market indices are less than 0.25, 
indicating a finite fourth moment. When 0x ³ , the GEV distribution of maxima 
belongs to the Frechét distribution. 
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[Table 2] GEV distribution fit to monthly block maxima 
 

KOSPI Value Standard Error t-ratio 

x  0.22 0.05  4.77 

s  1.03 0.05 20.28 
m   1.95 0.06 31.04 

S&P 500 Value Standard Error t-ratio 

x  0.25 0.04  5.54 

s  0.72 0.04 20.19 
m  1.32 0.04 29.87 

FTSE Value Standard Error t-ratio 

x  0.22 0.04  4.85 

s  0.63 0.03 20.50 
m  1.32 0.04 34.27 

NIKKEI Value Standard Error t-ratio 

x  0.13 0.04  3.13 

s  0.99 0.05 21.61 
m  1.80 0.06 29.97 

Note: The table reports the estimation results of the distribution (2), , , , ,( ) ( )n

n nn

xH H xm
x m s x m ss

- =  
with the Newton-Raphson algorithm for numerical maximization. 

 
[Table 3] Extreme loss probability calculation from the GEV fit to monthly block maxima 
 

 
Monthly maximum loss (%) Probability (%) 

KOSPI 12.02 0.0054 

S&P 500 20.47 0.0003 

FTSE 12.22 0.0008 

NIKKEI 14.90 0.0004 

Note: The table reports the probability of observing an unprecedented minimal return (the 
monthly maximum loss) during the first out-of-sample period. The sample is composed of 
350-month of data. We assume there are twenty-one trading days in each month. The 
subscript 21 stands for the number of days in each monthly block. The superscript 350 
represents the number of months in the sample. The probabilities in the third column are 
the computation results of the following:  

(351) (1) (350)
ˆ21 21 21 ˆ ˆ, ,

Pr( max( , , )) 1M M M H
x m s

> = -K  (monthly maximum loss). 
 
As an application of the GEV distribution parameter estimates, the out-of-sample 

forecast of the probability of a maximum loss at the 1-period horizon is made from 
the results in Table 2 and shown in Table 3. Since the maximum of the monthly 
block maxima is 12.02% for the KOSPI, the out-of-sample forecast of the 
probability of a maximum loss at the 1-period horizon is calculated as 
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(351) (1) (350)
ˆ21 21 21 ˆ ˆ, ,

Pr( max( , , )) 1 (12.02) 0.0054%.M M M H
x m s

> = - =K  That is, the 
probability that we observe a new record loss on the KOSPI index during the first 
out-of-sample period is 0.0054%. 

Likewise, we construct a one-step-ahead forecast of the probability of a new 
record maximum loss using the quarterly block maxima data and report the results 
in Table 5, along with the GEV distribution estimation results in Table 4. The tail 
shape parameter estimates for the market indices with the quarterly block maxima 
hover around 0.17 - 0.41, and are slightly greater than the estimates with the 
monthly block maxima. The probability that the next quarter’s maximum loss on 
the index is a new record minimal return with the quarterly block maxima is  
0.0165% for the KOSPI. This probability is in line with the corresponding 
probability that we calculate from the monthly block maxima. 

 
[Table 4] GEV distribution fit to quarterly block maxima 
 

KOSPI Value Standard Error t-ratio 

x  0.30 0.09  3.30 

s  1.15 0.11 10.93 

m  2.67 0.12 21.51 

S&P 500 Value Standard Error t-ratio 

x  0.36 0.09  4.15 

s  0.79 0.07 10.75 

m  1.86 0.08 22.12 

FTSE Value Standard Error t-ratio 

x  0.41 0.10  4.06 

s  0.60 0.06 10.10 

m  1.77 0.07 26.96 

NIKKEI Value Standard Error t-ratio 

x  0.17 0.07  2.46 

s  1.14 0.09 12.37 

m  2.58 0.12 21.72 

Note: The table reports the estimation results of the distribution (2), , , , ,( ) ( )n

n nn

xH H xm
x m s x m ss

- =  
with the Newton-Raphson algorithm for numerical maximization. 
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[Table 5] Extreme loss probability calculation from the GEV fit to quarterly block maxima 
 

 
Quarterly maximum loss (%) Probability (%) 

KOSPI 12.02 0.0165 

S&P 500 20.47 0.0020 

FTSE 12.22 0.0062 

NIKKEI 14.90 0.0022 

Note: The table reports the probability of observing an unprecedented minimal return (the 
monthly maximum loss) during the next quarter. The sample is composed of 117-quarter 
of data. We assume there are twenty-one trading days in each month. The subscript 63 
stands for the number of days in each quarterly block. The superscript 117 represents the 
number of quarters in the sample. The probabilities in the third column are the 
computation results of the following: 

(118) (1) (117)
ˆ63 63 63 ˆ ˆ, ,

Pr( max( , , )) 1M M M H
x m s

> = -K  (monthly maximum loss). 

 
We additionally investigate the trade-off relationship between the bias and the 

efficiency of the MLE method in estimating the GEV distribution using block 
maxima. We choose the number of observations per block to have the annual block 
maxima, the semester block maxima and the weekly block maxima, respectively. 
The number of blocks for each block maxima is 30, 59 and 2,127. The estimation 
results are presented in Tables 6, 7 and 8. The tail shape parameter estimates of the 
market indices with a variety of block maxima are consistent for the KOSPI (0.22 - 
0.32) and the NIKKEI 225 (0.13 - 0.17). For the S&P 500 and the FTSE, those 
hover around 0.22 - 0.46 and have a tendency to increase with the number of 
observations in the block. For most indices, the tail shape parameter estimates with 
the weekly block maxima have negative values with large standard errors. In sum, 
we find that the tail shape parameter estimates of the GEV distribution with block 
maxima are robust to the choice of the number of observations per block. 

 
[Table 6] GEV distribution fit to annual block maxima 
 

KOSPI Value Standard Error t-ratio 

x  0.29 0.18  1.63 

s  1.56 0.28  5.65 
m  3.81 0.33 11.53 

S&P 500 Value Standard Error t-ratio 

x  0.51 0.25  2.03 

s  1.35 0.29  4.61 
m  2.71 0.31  8.75 

FTSE Value Standard Error t-ratio 
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x  0.43 0.21  2.01 

s  0.89 0.18  5.01 
m  2.61 0.20 13.33 

NIKKEI Value Standard Error t-ratio 

x  0.14 0.15  0.97 

s  1.70 0.27  6.25 
m  4.33 0.35 12.26 

Note: The table reports the estimation results of the distribution (2), , , , ,( ) ( )n

n nn

xH H xm
x m s x m ss

- =  
with the Newton-Raphson algorithm for numerical maximization. 

 
[Table 7] GEV distribution fit to semester block maxima 
 

KOSPI Value Standard Error t-ratio 

x  0.32 0.13  2.47 

s  1.29 0.17  7.62 
m  3.15 0.20 16.03 

S&P 500 Value Standard Error t-ratio 

x  0.46 0.14  3.23 

s  0.94 0.13  7.06 
m  2.18 0.14 15.17 

FTSE Value Standard Error t-ratio 

x  0.46 0.15  3.04 

s  0.71 0.10  6.90 
m  2.07 0.11 18.77 

NIKKEI Value Standard Error t-ratio 

x  0.13 0.10  1.37 

s  1.47 0.16  9.01 
m  3.35 0.21 15.62 

Note: The table reports the estimation results of the distribution (2), , , , ,( ) ( )n

n nn

xH H xm
x m s x m ss

- =  
with the Newton-Raphson algorithm for numerical maximization. 

 
[Table 8] GEV distribution fit to weekly block maxima 
 

KOSPI Value Standard Error t-ratio 

x  -0.02 0.01 -2.11 

s  1.12 0.02 62.90 
m  0.67 0.03 25.65 

S&P 500 Value Standard Error t-ratio 

x  0.04 0.01  4.67 
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s  0.71 0.01 61.23 
m  0.43 0.02 26.20 

FTSE Value Standard Error t-ratio 

x  -0.01 0.01 -1.64 

s  0.75 0.01 63.48 
m  0.47 0.02 26.96 

NIKKEI Value Standard Error t-ratio 

x  -0.02 0.01 -1.88 

s  0.99 0.02 63.10 
m  0.64 0.02 27.51 

Note: The table reports the estimation results of the distribution (2), , , , ,( ) ( )n

n nn

xH H xm
x m s x m ss

- =  
with the Newton-Raphson algorithm for numerical maximization. 

 
We compute an alternative risk measure, the so-called return level from the 

estimated GEV distribution. The form of the k-year return level ,n kR  is: 
 

,

1
Pr{ }n n kM R

k
> =   for 1k >   

 
We expect the return level to be exceeded in one period out of every k periods. In 

our context of block maxima, the return level indicates a level of return which is 
exceeded by a block maximum return with the probability of 1 / k , on average. If 
we assume that the block maxima are distributed to the GEV distribution, then the 
estimate of the return level is obtained from the inverse of the GEV distribution. 
The form of the return level expressed in terms of MLEs of x , m  and s  is: 

 
ˆ

1
, , ,

ˆ1 1ˆ ˆ1 1 log 1ˆn kR H
k k

x

x m s
sm
x

-

-
ì üé ùæ ö æ öï ï= - = - - - -í ýê úç ÷ ç ÷

è ø è øï ë û ïî þ

,  for 0x ¹   

 
Using , , , ,Pr{ } ( ) ( ) ( )n

n nn

x n
nM x H H x F xm

x m s x m ss
-< » = = , for iid  losses X  with 

distribution function F , , ,
nH Fx m s »  so that 

 
1

, ,

1
( ) Pr( ) 1

n

n k n n kF R M R
k

æ ö
= £ » -ç ÷

è ø
  (11) 

 
From equation (11), we can interpret the return level ,n kR  as the 1/1(1 ) n

k-  
quantile of the loss distribution function F  for iid losses. That is, the 40-year 
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return level from the monthly maxima 21,480R  is the 99.99% quantile and the 40-
year return level from the quarterly block maxima 63,160R  is the 99.99% quantile of 
the loss distribution. Given the parameter estimates of the GEV distribution, the 40-
year return level of the GEV distribution function is computed and reported in 
Table 9 and Table 10. The return level estimate of 15.53% for the KOSPI returns 
means that the monthly maximum loss observed during a period of one month will 
exceed 15.53% only in one month out of every 40 years, on average. From the point 
of view of a risk manager, it seems that the KOSPI is riskier than any other market 
indices.  

 
[Table 9] The 40-year return level of the loss distribution using monthly block maxima 
 

 
40-year return level 95% Lower bound 95% Upper bound 

KOSPI 15.53 12.01 21.87 

S&P 500 11.92  9.22 16.95 

FTSE  9.51  7.48 13.20 

NIKKEI 11.16  9.15 14.70 

 
[Table 10] The 40-year return level of the loss distribution using quarterly block maxima 
 

 
99.9% Quantile 95% Lower bound 95% Upper bound 

KOSPI 16.57 11.32 30.21 

S&P 500 13.39  9.15 25.00 

FTSE 12.15  7.64 24.98 

NIKKEI 11.82  9.19 17.85 

 
3.3. The GPD Function Estimation 

 
We estimate the GPD parameters with excesses over a high threshold. The GPD 

approach is operable with an optimal threshold over which we have enough 
observations to obtain efficient parameter estimates of the model. At the same time, 
care must be taken to select a high threshold to minimize the bias of the GPD 
parameter estimates. We can minimize the bias of the GPD parameter estimates by 
choosing a high threshold. In theory, it is best to fit the GPD to the data solely 
pertained to the tail of the distribution and not included in the center of the 
distribution. At the same time, however, we want to reduce the variance of the 
parameter estimates by keeping un  large enough to have a sufficient number of 
exceedances of X  over a high threshold.  
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[Figure 2] Mean excess function plot 
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For locating the threshold value, we use the sample mean excess function plot in 

Figure 2. We have chosen the threshold value of one from which the mean excess 
function plot shows a straight line with positive slope. This suggests that the 
excesses over a threshold 1u =  have Pareto distributed heavy tails. We choose a 
high threshold 1u =  and denote the exceedances of 1 , ,

unX XK  above u  as the 
excess distribution of X over a high threshold. By selecting 1u = , we include 20% 
of the total of 7,351 observations of the KOSPI data to fit the GPD. The GPD 
functions for the S&P 500 index, the FTSE and the NIKKEI 225 are fit to 12%, 13% 
and 19% of the observations of the data, respectively.  

We report the GPD estimation results in Table 11 and Table 12. The maximum 
likelihood estimates for x , (1)b  and the asymptotic standard errors with the 
threshold 1u =  are presented in Table 11. The tail shape parameter estimate of x  
for each index returns ranges from 0.07 to 0.17 which may be interpreted as having 
a heavy tail. We also report the GPD parameter estimation results with extreme 5% 
of the observations in Table 12. We choose the upper and the lower threshold value 
as -2.55 and 2.55 so that the tails of the GPD function on both extremes include 5% 
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of the observations of the KOSPI returns. While the number of exceedances in the 
lower tail above a threshold value of -2.55 accounts for 5.27% of the data, the 
number in the upper tail above a threshold value of 2.55 contains 5.03% of the data 
indicating the tail shape asymmetry. Compared with the results in Table 11, the tail 
shape parameter estimates of the KOSPI and the FTSE index returns in Table 12 
do not have much difference in values. For the S&P 500 index and the NIKKEI 
returns, we observe a slight increase in the tail shape parameter estimates. We also 
confirm these results in Figure 3. 

 
[Table 11] GPD , ( )uGx b  estimation results with a threshold value of 1u =   
 

 
Value Standard Error t-ratio 

KOSPI    

x  0.09 0.03  3.12 

b  1.06 0.04 25.79 

S&P 500    

x  0.17 0.04  4.83 

b  0.73 0.04 20.62 

FTSE    

x  0.17 0.04  4.57 

b  0.65 0.03 20.16 

NIKKEI    

x  0.07 0.03  2.93 

b  0.94 0.03 27.02 

Note: The table reports the maximum likelihood estimation results of the GPD parameters 
which are used in constructing the semi-parametric estimation of the tail estimator. 

 
[Table 12] GPD , ( )uGx b  estimation results with extreme 5% of the observations 
 

 
Value Standard Error t-ratio 

KOSPI    

u  2.55   

x  0.07 0.06  1.26 

b  1.24 0.09 13.08 

S&P 500    

u   1.72   

x  0.27 0.06  4.21 

b  0.74 0.06 12.26 
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FTSE    

u  1.65   

x  0.15 0.06  2.49 

b  0.82 0.06 12.81 

NIKKEI    

u  2.28   

x  0.22 0.06  3.45 

b  0.85 0.07 12.41 

Note: The table reports the maximum likelihood estimation results of the GPD parameters 
which are used in constructing the semi-parametric estimation of the tail estimator. We 
estimate the GPD parameters using the 5% of the extreme observations. 

 
We report the graphical representations of the diagnostic tests for the GPD 

estimation results in Figure 3. The upper right panel graph for each market index is 
the representation of the GPD tail. The GPD specification approximates the 
excesses over the threshold remarkably well. The graphical representation of 
equation (3) is produced in the upper left panel of Figure 3. 

 
[Figure 3] GPD estimation results 
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<S&P 500> 
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<NIKKEI> 

 
 

The upper left panel graph describes the excess distribution fit of the GPD. The 
GPD tail plot of the underlying distribution is presented in the upper right panel 
graph. In the lower left panel graph, we draw a scatterplot of the residuals. The 
lower right panel graph contains the qq-plot of the residuals. 

 
[Figure 4] Estimates of the shape parameter x  across a variety of threshold values u  
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  <FTSE>                             <NIKKEI> 
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The shape parameter estimates remain positive across a variety of threshold 

values. The shape parameter estimates for the KOSPI and the FTSE returns are 
nearly constant, while the GPD estimates of tail behavior grow very slowly for the 
S&P500 and the NIKKEI returns. The estimates of x  are robust to the choice of 
the threshold values as can be seen in Figure 4. As long as un  is large enough to 
include 5% of the observations (about 367 observations), for example, the variance 
of the GPD estimator seems sufficiently low. 

The GPD estimate of the tail shape parameter for each index return is shown in 
the figure. The estimated x ’s against the threshold values (upper-axis) are 
presented in solid line. The lower-axis corresponds to the number of exceedances of 
the excesses over the threshold. The dashed line represents the 95% confidence 
interval. 

 
[Figure 5] Mean excess function plot of the threshold excesses 
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We split the threshold excesses distribution into upper and lower tail and 

estimate the GPD parameters x  and ( )ub  of equation (3) by MLE. For the 
threshold excesses distribution, a graphcial inspection of the mean excess function 
plots in Figure 2 and Figure 5 sets the threshold values as approximately 1loweru = -  
and 1upperu = , respectively. 

For the KOSPI with 1upperu = , the mean excess function plot is linear with a 
positive slope, meaning that the threshold excesses are Pareto distributed in the 
upper tail. The tail shape parameters on both extreme deviations are calculated by 
the MLE methodology. With the upper threshold 1upperu = , we include 20% of the 
total of 7,351 observations in the data and 22% of the data with the lower threshold 

1loweru = - . The GPD parameter estimates in the upper tail are shown in Table 13. 
The qq-plots of the lower and upper tail shape parameter estimates in Figure 6 are 
close to linear when we use the GPD as the reference distribution. It seems 
reasonable to fit the tails of the threshold excesses on both extremes to the GPD 
function.  

 
[Table 13] GPD , ( )uGx b  fit to the threshold excesses in the upper tail 
 

 
Value Standard Error t-ratio 

KOSPI    

x  0.12 0.03  4.14 

b  1.02    0.04 26.26 

S&P 500    

x  0.19 0.04  5.15 

b  0.63 0.03 20.60 

FTSE    

x  0.17 0.04  4.57 
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b  0.65 0.03 20.16 

NIKKEI    

x  0.07 0.03  2.93 

b  0.94 0.03 27.02 

 
[Figure 6] qq-plot of the upper and lower tail estimates of the GPD 
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It is hard to pick up the level of a threshold where the mean excess function is 

linearly correlated with respect to the threshold for a fixed value of x . However, 
Hsu et al. (2012) find that including 5% of the observations is reasonable in 
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estimating the GPD function and consistent with earlier studies. In that regard, we 
investigate the GPD specifications across a variety of threshold values. We set the 
initial value of the threshold as zero for the GPD model. This includes 48% of the 
total of 7,351 observations of the KOSPI data to fit the GPD, 46% of the S&P 500, 
48% of the FTSE and 49% of the NIKKEI 225 data. We increase the threshold 
value consecutively to reach the point where the model estimation contains less 
than 1% of the total observations.  

We find that the statistical level of significance has a tendency to move in the 
opposite direction with the level of threshold values. However, the values of the 
estimated parameters of the GPD are relatively constant across a variety of threshold 
values. The choice of an optimal threshold is an important issue as shown in Oh 
(2005), however, the GPD estimates from the data used in this paper are stable and 
robust to the choice of a variety of threshold values. This is in line with the result in 
McNeil and Frey (2000), where they show that the GPD estimator is efficient and 
stable with respect to the choice of the threshold value for the fat-tailed distributions 
in general. 

As indicated in Figure 7, the estimates of x  vary from 0 to 0.1 for the KOSPI, 
from 0 to 0.4 for the S&P 500, from 0 to 0.2 for the FTSE and from 0 to 0.25 for the 
NIKKEI 225. For comparison, we report the GPD estimation results in Table 14. 
The maximum likelihood estimates for x , (0)b  and the asymptotic standard 
errors with the threshold 0u =  are presented in Table 14. The tail shape 
parameter estimates of x  for each index returns range from 0.07 to 0.17. This can 
be interpreted as having a heavy tail for each index returns 

 
[Figure 7] Estimates of the GPD parameter x  across a variety of threshold values u  
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[Table 14] GPD , ( )uGx b  estimation results with a threshold value of 0u =  
 

 
Value Standard Error t-ratio 

KOSPI    

x  0.03 0.02  1.75 

b  1.13 0.03 43.38 

S&P 500    

x  0.09 0.02  5.66 

b  0.72 0.02 41.86 

FTSE    

x  0.02 0.01  1.64 

b  0.78 0.02 45.43 

NIKKEI    

x  0.02 0.01  1.29 

b  1.02 0.02 45.30 

Note: The table reports the maximum likelihood estimation results of the GPD parameters 
which are used in constructing the semi-parametric estimation of the tail estimator. 

 
3.4. Risk Measure Evaluation Results 

 
Table 15 reports the computation results of the VaRa  and the ESa  based on 

the GPD approximations (7) and (10), respectively.  
 

[Table 15] Estimates of the VaRa  and ESa  with the GPD 
 

 
VaR ES 

KOSPI   

0.95 2.56 3.88 

0.99 4.65 6.17 

S&P 500   

0.95 1.71   2.74 

0.99 3.29   4.66 

FTSE   

0.95 1.67 2.60 

0.99 3.10 4.33 

NIKKEI   

0.95 2.30 3.43 

0.99 4.08 5.34 
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According to the estimation results in Table 15, the daily loss on the S&P 500 
index may be as low as -1.71% with the 5% probability. And, under the condition 
that the daily negative returns are less than -1.71%, the average loss on the S&P 500 
index return is -2.74%. Also, the daily loss on the S&P 500 index may be as low as  
-3.29% with the 1% probability. Again, under the condition that the daily negative 
returns are less than -3.29%, the average loss on the index return is -4.66%. If the 
distribution of the daily losses is a fat-tailed distribution, the VaRa  and the ESa  
computed from the standard normal distribution may be misleading and 
underestimate the true VaRa  and the ESa . To confirm this assertion, we 
compute the VaRa  and the ESa  for 0.95, 0.99a = . Table 16 shows the 
estimates of the VaRa  and ESa  based on the normal distribution. The daily 
negative return on the S&P 500 index could be as low as -1.87% with the 5% 
probability. And, under the condition that the daily negative returns are less than  
-1.87%, the average loss on the index return is -2.36%. Also, the daily loss on the 
index could be as low as -2.66% with 1% probability. And, under the condition that 
the daily negative returns are less than -2.66%, the average loss on the index return 
is -3.06%. 

 
[Table 16] Estimates of the VaRa  and ESa  with the normal distribution 
 

 
VaR ES 

KOSPI   

0.95 2.71 3.41 

0.99 3.86 4.42 

S&P 500   

0.95 1.87 2.36 

0.99 2.66 3.06 

FTSE   

0.95 1.80 2.27 

0.99 2.56 2.94 

NIKKEI   

0.95 2.40 3.01 

0.99 3.40 3.89 

 
We compare the computation results of the VaRa  based on the GPD 

approximations to those based on the RiskMetrics methodology and the GARCH 
model estimation. We follow the procedure presented in Oh (2005) in calculating 
the tail-related risk measures. The robustness test results of the VaRa  estimates 
across a variety of threshold values u  are presented in Figure 8. The estimates of 
the VaRa  are consistent for a variety of threshold values. Contrary to this, the 
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VaR  values based on the RiskMetrics methodology and the GARCH model are 
extremely volatile as shown from Figure 9 to Figure 12. GARCH models are known 
to have poor tail properties and are not designed to evaluate the VaR . From a risk 
manager’s perspective, it would be difficult to adjust the capital requirement of a 
financial institution to conditional market risk. The use of a conditional return 
distribution also raises concerns related to constructing conditional variance-
covariance measures when a portfolio is composed of a large number of assets. Due 
to the concerns raised for practical and statistical reasons, we can conclude that the 
GPD method for measuring unconditional market risk is appropriate for measuring 
and managing the tail-related risk. 

 
[Figure 8] Sensitivity analysis of the 0.99VaR  with respect to threshold values 
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[Figure 9] 0.95VaR  based on RiskMetrics Method 
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[Figure 10] 0.99VaR  based on RiskMetrics Method 
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[Figure 11] 0.95VaR  based on GARCH(1,1) model 
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[Figure 12] 0.99VaR  based on GARCH(1,1) model 
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IV. Concluding Remarks 

 
In this paper, the EVT based semi-parametric approach to estimating the tail-

related risk is compared with the method for evaluation of the extreme risk with 
normally distributed returns.  
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We fit the GEV distribution to the independent realizations of the block maxima 
random variable. The GEV distribution of various block maxima belongs to the 
Frechét distribution. We choose the number of observations per block to have the 
annual block maxima, the semester block maxima, the quarterly block maxima, the 
monthly block maxima and the weekly block maxima. The number of blocks for 
each block maxima is 30, 59, 117, 350 and 2,127, respectively. The tail shape 
parameter estimates of the market indices with a variety of block maxima are 
consistent for the KOSPI and the NIKKEI 225. For the S&P 500 and the FTSE, 
those range from 0.22 to 0.46 and have a tendency to increase with the number of 
observations in the block. For most indices, the tail shape parameter estimates with 
the weekly block maxima have negative values with large standard errors. In sum, 
we find that the tail shape parameter estimates of the GEV distribution with the 
block maxima are robust to the choice of the number of observations per block. 

As an application of the GEV distribution parameter estimates, the out-of-sample 
forecast of the probability of a maximum loss at the 1-period horizon is made. Since 
the maximum of the monthly block maxima is 12.02% for the KOSPI, the out-of-
sample forecast of the probability of a maximum loss at the 1-period horizon is 
calculated as 0.0054%. Armed with the parameter estimates of the GEV distribution, 
the 40-year return level is computed. The return level estimate of 15.53% for the 
KOSPI returns means that the monthly maximum loss observed during a period of 
one month will exceed 15.53% only in one month out of every 40 years, on average. 
From the point of view of a risk manager, it seems that the KOSPI is riskier than 
any other market indices.  

As an alternative method for estimating the tail-related risk measures to the GEV 
distribution, we estimate the GPD function with the excesses over a high threshold. 
In theory, it is best to fit the GPD to the data solely pertained to the tail of the 
distribution and not included in the center of the distribution. However, it is hard to 
pick up the level of a threshold where the mean excess function is linearly correlated 
with respect to the threshold for a fixed value of the tail shape parameter. To 
balance between efficiency and unbiasedness, we need to find an optimal threshold 
over which we have enough observations to obtain efficient parameter estimates and 
minimize the bias of the GPD parameter estimates.  

We investigate the GPD specifications across a variety of threshold values. We set 
the initial value of the threshold as zero for the GPD specification. This includes  
48% of the total of 7,351 observations of the KOSPI data to fit the GPD, 46% of the 
S&P 500, 48% of the FTSE and 49% of the NIKKEI 225 data. We then increase the 
threshold value consecutively to reach the point where the model estimation 
contains less than 1% of the total observations. We find that the statistical level of 
significance has a tendency to move in the opposite direction with the level of 
threshold values. However, the values of the estimated parameters of the GPD are 
relatively constant across a variety of threshold values. The tail shape parameter 
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estimates of the GPD vary from 0 to 0.1 for the KOSPI, from 0 to 0.4 for the S&P 
500, from 0 to 0.2 for the FTSE and from 0 to 0.25 for the NIKKEI 225. Specifically, 
the tail shape parameter estimates with extreme 5% of the observations for each 
index returns range from 0.07 to 0.27. This suggests that the GPD with the index 
returns can be represented as having a heavy tail. The tail shape parameter 
estimates of the GPD are robust to the choice of the threshold values. As long as we 
choose a threshold high enough to include 5% of the observations (about 367 
observations in our study), for example, the variance of the GPD estimator seems 
sufficiently low. The choice of an optimal threshold is an important issue as shown 
in Oh (2005), however, the GPD estimates from the data used in this paper are 
stable and robust to the choice of a variety of threshold values. This is in line with 
the result in McNeil and Frey (2000), where they show that the GPD estimator is 
efficient and stable with respect to the choice of the threshold value for the fat-tailed 
distributions in general. 

Lastly, we estimate the tail-related risk measures such as the Value-at-Risk (VaR) 
and the expected shortfall (ES). Combined with the GPD estimator, we use the 
non-parametric method for estimating the risk measures using an empirical 
distribution. The GPD approach to estimating the VaR and the ES is compared 
with the method for evaluating the extreme risk with normally distributed returns. 
When the index returns have a fat-tailed distribution, the risk measures computed 
from the normal distribution underestimate the tail-related risk. The GPD 
estimator in this paper is proved to be efficient and stable with respect to the choice 
of the threshold value when the return has a fat-tailed distribution. We exercise the 
robustness test of the VaRa  estimates for a variety of threshold values. The 
estimates of the VaRa  are stable with respect to the changes in the threshold 
values. The GPD model is most appropriate in measuring and managing the risk 
associated with extreme events in terms of accuracy, stability and robustness. We 
compare the computation results of the VaRa  based on the GPD approximations 
to those based on the RiskMetrics methodology and the GARCH model estimation. 
The estimates of the VaRa  are robust to a variety of threshold values. Contrary to 
this, the VaR values based on the RiskMetrics methodology and the GARCH model 
are extremely volatile. From a risk manager’s perspective, it would be difficult to 
adjust the capital requirement of a financial institution to conditional market risk. 
Due to the concerns raised for practical and statistical reasons, we can conclude that 
the GPD method for measuring unconditional market risk is appropriate for 
measuring and managing the tail-related risk. 
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