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The CBOE volatility index (VIX) is a representative barometer of the overall sentiment 
and volatility of the financial market. This paper seeks to apply random forest and its 
variable importance measure to forecasting the VIX index. Compared to the previous 
literature which has found it difficult to outperform the pure HAR process in terms of 
forecasting the VIX index due to its persistent nature, random forest can produce forecasts 
that are significantly more accurate than the HAR and augmented HAR models for multi-
days forecasting horizons. This paper shows that the forecasting accuracy of random forest 
could be further improved by systematically selecting the optimal number of the most 
important covariates from a dataset of 298 macro-finance variables, while using the Boruta 
algorithm which ranks the variables based on random forest’s variable importance measure. 
The superior predictability of this method is more evident with longer forecasting horizons. 
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I. Introduction 

 
The implied volatility index of the Chicago Board Options Exchange (CBOE), 

commonly known as the VIX index, represents the market’s estimate of the future 
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volatility of the S&P 500 over the next 30 calendar days. It is derived from the 
bid/ask quotes of options on the S&P 500 index, and it is disseminated on a real-
time basis. As it is calculated directly based on option prices rather than being solved 
out of an option pricing formula like the Black-Scholes, the VIX index is free from 
the measurement errors that were present in the previous implied volatility 
measures.  

The VIX index attracts substantial attention in the financial market. Not only is 
it widely traded in the form of VIX futures for hedging or speculative purposes, but 
it is also acknowledged as the world’s leading barometer of investor sentiment and 
market volatility. Thus, accurate forecasts of the VIX index in the short and long 
term can provide crucial information to participants in the financial market. 

There are numerous research topics related to implied volatility and the VIX 
index and, unsurprisingly, there has been research focusing directly on forecasting 
the VIX index. Degiannakis (2008) considers realized and conditional volatility of 
the S&P 500 as exogenous covariates in modelling VIX in an ARFIMA model. 
However, he concludes that the VIX index is hard to forecast, and that it does not 
seem to be closely connected to the volatility of the underlying index. Konstantinidi 
et al. (2008) model seven different implied volatility indices including VIX in a 
multivariate VAR framework, and they confirmed the presence of implied volatility 
spillover between various markets. However, their method did not succeed in 
deriving significantly improved forecasts.  

Fernandes et al. (2014) apply a heterogeneous autoregressive (HAR) model 
coupled with neural network approximation to capture non-linearity for forecasting 
VIX; they conclude that it is very hard to exceed the performance of the pure HAR 
process due to the highly persistent nature of the VIX index. Conversely, Psaradellis 
et al. (2016) find significant evidence of strong non-linearity in VIX by employing a 
HAR process combined with support vector regression model, thereby improving 
upon the results of the one-day-ahead forecasts of the pure HAR model.1 

However, most of the literature focuses solely on one-day-ahead forecasts of VIX, 
while suggesting the multi-day-ahead forecast problem as a topic of future research. 
Forecasting VIX on a longer horizon can be a significant matter in several aspects. 
For an investor who adjusts his/her portfolio including VIX futures on a multi-day 
basis while considering trading costs, multi-day-ahead forecasts may be more useful 
than one-day-ahead forecasts. For a market participant searching for clues about the 
future volatility and direction of the overall market, an accurate multi-day-ahead 
forecast of VIX can provide significant information. Moreover, most of the studies 
on VIX forecasting consider only a handful of exogenous covariates, if any, and they 
____________________ 

1 Ballestra et al. (2019) consider the directional forecast of VIX Futures instead of the VIX index, 
and they use a feed-forward neural network model with non-lagged explanatory variables that are 
available only a few hours before the opening of the CBOE. They find that the neural network model 
with only one most recent exogenous variable is the superior model. 
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do not make use of the “big” datasets that are easily available nowadays.  
The main motivation of this paper is to fill these research gaps. We focus on 

multi-day-ahead forecasting of VIX of up to 22 trading days, and we also utilize a 
high-dimensional dataset including 298 macro-finance variables. We investigate 
whether the findings of Fernandes et al. (2014) are still valid when utilizing a high-
dimensional dataset. Another feature of this paper is to investigate a random forest 
procedure that systematically selects the most important variables. Specifically, we 
adopt the Boruta algorithm to select macro-finance variables and choose, via cross-
validation, the optimal number of the most important variables that are used for 
random forest. To the best of our knowledge, this is the first study to apply a 
systemic variable selection mechanism based on the Boruta algorithm in time series 
forecasting.  

The main findings of this paper are as follows: First, the random forest method 
provides superior multi-day-ahead out-of-sample forecasts; while it does not 
produce better one-day-ahead forecasts, it outperforms other benchmark models in 
5/10/22-days-ahead forecasts. Moreover, the relative accuracy of the random forest 
method compared to benchmark models becomes more evident as the forecasting 
horizon increases. 

Second, the random forest method using only the optimal number of the most 
important covariates from the Boruta algorithm can produce significantly superior 
out-of-sample forecasts over that using all available covariates. This is consistent 
with the existing view noted in Kohavi and John (1997) suggesting that it is 
important to select the most important variables when given a high-dimensional 
dataset. This finding is still valid when we consider more recent data and the 
various machine learning methods described in Appendix A. 

The rest of the paper is organized as follows: The next section describes our 
methodology and briefly explains the random forest method and Boruta algorithm. 
The third section describes the data, forecasting procedure, and benchmark models. 
The fourth section reports the main results, including the variable selection, choice 
of optimal number of variables, forecast results, and robustness check. Lastly, the 
fifth section concludes the paper. 

 
 

II. Methodology 
 
The recent advances in machine learning (ML) methods and the increased 

accessibility to “big” datasets have led to opportunities to approach the problem of 
forecasting economic time series in a novel way. While traditional econometric 
applications are centered around parameter estimation, ML methods revolve 
around the problem of prediction—specifically, of producing predictions of ŷ  
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from x . While traditional econometric models rely on careful assumptions about 
the underlying data-generating-process, ML methods seek to discover complex 
structures that are not specified in advance. They manage to fit complex and very 
flexible functional forms to the data without simply overfitting, and they produce 
relatively accurate out-of-sample predictions (Mullainathan and Spiess, 2017). 

Medeiros et al. (2019) is one of the recent studies that has highlighted the benefits 
of applying ML methods to economic time series forecasting. It applies a wide range 
of ML models to forecasting US inflation, and it finds that ML methods combined 
with high-dimensional datasets can produce more accurate forecasts than 
traditional benchmark models. Specifically, it reports that a particular model, 
random forest (RF) of Breiman (2001), consistently outperforms all other models 
due to its ability to catch nonlinearities and its variable selection mechanism. 
Moreover, it reports that the superiority of random forest becomes more evident in 
settings where the forecasting horizon becomes longer as well as during the periods 
when the time series is more volatile. 

This research seeks to discover how ML methods can provide benefits to 
forecasting the VIX index, especially with a focus on the random forest method and 
its variable selection mechanism through variable importance measures. The 
distinct features of our methodology are that we adopt the Boruta algorithm by 
Kursa et al. (2010) to select the most important covariates and that we choose the 
optimal number of selected covariates in the random forest method.  

One of the strengths of machine learning methods such as RF is their ability to 
handle datasets with high-dimensional covariates. However, many machine 
learning algorithms exhibit decreased accuracy when the number of variables is 
significantly higher than optimal (Kohavi et al. 1997). Thus, when given a high-
dimensional dataset, it is often an important matter to distinguish and select out the 
most important variables, not only for technical efficiency, but also to enhance 
accuracy in solving the relevant problem. Our results in Section 4 confirm that RF 
using the optimal number of selected covariates, as opposed to all available high-
dimensional data, provides better forecasts.  

Our methodology consists of the following steps: 
Step 1: Using the Boruta algorithm, obtain the rankings of the covariates in high-

dimensional data. 
Step 2: Choose the optimal number of the most important covariates via cross-

validation. 
Step 3: Using only those selected covariates from the previous step, implement 

the random forecast method and produce a forecast. 
 
We briefly explain the random forest method and Boruta algorithm in the 

following subsections.  
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2.1. Random Forests and Permutation Importance 
 
Random forest has its roots in classification and regression trees (CART). 

Introduced by Breiman et al. (1984), it is a simple model which partitions the 
predictor space into rectangles using binary splits, then uses those splits to 
determine the outcome prediction. That is, it divides the set of possible values of the 
predictors 1 2, , , PX X X¼  into J  distinct and non-overlapping regions, 1 2, ,R R

, JR¼ . For every observation that falls into region JR , the same prediction is made, 
which is simply the mean of the response values for the training observations in JR . 
For a regression tree, the objective is to identify the partition 1 2, , , JR R R¼  such 
that the residual sum of squares (RSS, henceforth) given by  

 

2

1

ˆ( )
j

J

i R
j i Rj

y y
= Î

-åå   (1) 

 
is minimized. 

It is apparent that it becomes computationally infeasible to consider every 
possible partition of the predictor space. As a result, a top-down approach known as 
recursive binary splitting is utilized. The tree diagram in the left of Figure 1 
illustrates a widely used example from Hastie et al. (2001) in which a tree model is 
grown in a regression setting with two predictors – 1X  and 2X . On the top node 
(or split) of the tree, the predictor space is partitioned into two regions at 11X t= . 
Then, the region to the left of 11X t=  is partitioned at 22X t=  and the region to 
the right is partitioned at 31X t= . Finally, the region to the right of 31X t=  is 
partitioned at 2 4X t= . At each node of the tree, the best split is determined such 
that the decrease in RSS due to the particular split is maximized. It is a greedy 
approach in that each split only considers the best one at that particular step, rather 
than looking ahead to also consider the future steps. The resulting partition of the 
predictor space is illustrated in the right diagram of Figure 1, where the five regions 
(or rectangles) 1 5, ,R R¼  correspond to the five terminal nodes in the tree diagram. 

An obvious question one faces when growing a tree model is how large the tree 
should be grown. A very large tree could easily overfit the data, whereas a very small 
tree could miss out on important structures underlying in the data. Cost-complexity 
pruning is a strategy that is widely used to determine the optimal tree size. The idea 
is to grow a sufficiently large tree, then prune the tree back to obtain a subtree that 
minimizes the cost-complexity criterion that penalizes the size of the tree model.  

While having low model bias, a single tree model is typically known to be less 
competitive with the best ML methods in terms of prediction accuracy due to its 
high variance. Random forest, introduced by Breiman (2001), seeks to reduce the 
variance of trees through a bootstrap aggregation (or bagging) approach. Thus, the 
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idea is to average many noisy but approximately unbiased trees to achieve stability 
while taking advantage of the advantages of tree models. 

 
[Figure 1] Example of a Regression Tree 
 

 
 
Random forest is an ensemble of a few hundred to thousands of unpruned trees, 

each trained on a bootstrap sample of the original data. When building a tree from a 
bootstrapped sample, RF uses m  randomly selected input variables at each split.2 
This random selection of potential predictors to be selected ensures that the trees in 
the forest are decorrelated to each other. For a regression problem, the prediction of 
RF for a new test point x  is defined as 
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where B  is the number of trees in the whole forest and ( )bT x  corresponds to the 
prediction from the thb  tree. 

A desirable by-product of the bootstrap sampling process of RF is the presence of 
out-of-bag (OOB) samples, or the observations that are left out from each bootstrap 
sampling. These OOB samples can be utilized to measure the importance of each 
input variable. 

When the thb  tree is grown, the OOB samples are run down the tree to 
calculate the OOB mean squared error (MSE):  

 

____________________ 
2 A typical choice of m  with    m p=  for classification and / 3m p=  for regression is known 

to perform well in most cases. 



Byung Yeon Kim ∙ Heejoon Han: Multi-Step-Ahead Forecasting of the CBOE Volatility Index 547

2

1:,

ˆ( )
1

 
b

n

b i i
i i OOBOOB b

OOBMSE y y
n = Î

= -å , (3) 

 
where ,OOB bn  denotes the number of observations in the thb  OOB sample. Then, 
the values of the thj  variable jX  are randomly permuted in the OOB data, and 
the permuted OOB MSE is calculated for the thj  variable: 
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If jX  does not have a predictive value for the given tree, random permutation of 

jX  should make a small difference to the OOB MSE. On the other hand, if jX  
is used as an important variable within the tree, then random permutation of jX   
should lead to a significant increase in OOB MSE. Thus, the increase in MSE due 
to this permutation averaged over all trees is used as a measure of the importance of 

jX :  
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This measure of variable importance in RF is known as the permutation 

importance. 
 

2.2. The Boruta Algorithm 
 
Until recently, there have been various methodologies developed for variable 

selection using RF variable importance measures. These developments have been 
particularly extensive in the bioinformatics and related fields, i.e., for identifying the 
important genetic variables for predicting certain disease status such as cancer. 
However, there does not yet appear to be consensus on a single outperforming 
variable selection methodology in a RF setting. 

Speiser et al. (2019) compare the performance of 13 different RF variable 
selection procedures that have been developed. It reports the OOB errors as well as 
the computation time of the different methodologies when they are applied to 311 
different datasets. That study reports that the Boruta algorithm by Kursa and 
Rudnicki (2010) is one of the better performing procedures overall in terms of OOB 
errors, and it is especially preferrable in high-dimensional settings with over 50 
predictors.  

The Boruta is a wrapper algorithm built around RF that provides a stable 
selection of the important variables from the dataset. The Z-score, which is derived 
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for each variable by dividing the permutation importance measure by its standard 
deviation, is used as the measure of selection. Moreover, it extends the dataset by 
adding variables that are random by design. For each variable in the dataset, it 
creates a ‘shadow attribute’ which is obtained by shuffling the values of the original 
variable.   

In detail, the Boruta algorithm consists of the following steps:  
1. Extend the dataset by adding copies of all variables.  
2. Shuffle the added variables to remove their correlations with the response. 

(Shadow attributes) 
3. Run a random forest on the extended dataset and collect the computed Z 

scores. 
4. Find the maximum Z score among shadow attributes (MZSA), then assign a 

hit to every variable that scored better than MZSA. 
5. For each variable with undetermined importance, perform a two-sided test of 

equality with the MZSA. 
6. Deem the variables that have significantly lower importance than MZSA as 

‘unimportant’ and permanently remove them from the dataset. 
7. Deem the variables that have significantly higher importance than MZSA as 

‘important’. 
8. Remove all shadow attributes. 
9. Repeat the procedure until the importance is assigned for all the variables or 

the algorithm has reached the previously set limit of the random forest runs. 
 
Through an iterative process of eliminating variables deemed unimportant, the 

Boruta algorithm can deal with both the fluctuating nature of the RF variable 
importance measure and the interactions between the variables. Figure 2 in Kursa 
and Rudnicki (2010) shows an example of a Boruta result plot that displays the 
distribution of Z-scores from the iterations, and from which the ranking of the 
relative importance between variables can be derived.  

The Boruta package available for usage in R is utilized for the results in Section 4. 
We let the maximum number of iterations of the Boruta algorithm be 100. The 
mean of the Z-scores from the 100 iterations are extracted from the results of the 
Boruta algorithm, and the variables are ranked based on this measure. In Section 4, 
the list of the top-30 ranked variables is reported and utilized for the purpose of 
selecting an optimal set of variables to forecast VIX in a random forest method. 
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III. Data and Forecasting Procedure 
 

3.1. Data 
 
We consider the sample period starting from April 5, 1990 and extending to 

January 15, 2013, matching that of the data used in Fernandes et al. (2014). The 
sample period includes a total of 5,740 daily observations of the VIX index and all 
exogenous variables. In Section 4.4, as a robustness check, we also consider recent 
data ranging from January 27, 2009 to December 31, 2020 with a total of 3,005 daily 
observations of all variables.  

 
[Figure 2] Logarithm of VIX (April 5, 1990 – January 15, 2013) 
 

 
 
Table 1 lists the descriptive statistics for the logarithm of the VIX index for the 

period from April 5, 1990 to January 15, 2013. It reports the mean, median, 
minimum, maximum, standard deviation, skewness, kurtosis, p-values of Jarque-
Bera, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) test results, and the 
KPSS test statistic. The unit root test results show that the logarithm of the VIX 
index is stationary, as the null hypothesis of unit root is rejected in the ADF and PP 
tests and the KPSS test cannot reject the null hypothesis of stationarity. 

This research considers 298 other macro-finance variables as exogenous 
covariates for forecasting the VIX index, and they consist of the following: the k-day 
continuously compounded returns on the S&P 500 index (k=1, 5, 10, 22, 66) and 
the first difference of the logarithm of the volume of the S&P 500 index; the k-day 
continuously compounded returns on the crude oil futures contract; the first 
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difference of the logarithm of US dollar foreign exchange value on seven currencies 
(Australian dollar, Canadian dollar, Swiss frac, euro, British sterling pound, 
Japanese yen, and Swedish kroner) and a trade-weighted average of the above 
foreign exchange values; the yield difference between Moody’s seasoned Baa rated 
corporate bonds and Aaa rated corporate bonds (credit spread); the difference 
between 10-year and 3-month treasury constant maturity rates (term spread); the 
first difference of the logarithm of 10 other stock indices (NASDAQ-100, Dow 
Jones Industrial Average, FTSE ALL-Share index, FTSE-100 index, DAX 
Performance index, Swiss Market index, Nikkei 225, KOSPI index, Hang Seng 
index, and the BSE Sensex index); the first difference of the logarithm of world gold 
price; and the daily returns of the individual S&P 500 composites available since 
1990 (266 return series). All data were retrieved from Thomson Reuters Datastream 
and Federal Reserve Economic Data (FRED). 

 
[Table 1] Descriptive Statistics for Logarithm of VIX (April 5, 1990 – January 15, 2013) 
 

Mean 2.951 
Median 2.931 
Minimum 2.231 
Maximum 4.393 
Standard Deviation 0.349 
Skewness 0.547 
Kurtosis 3.274 
Jarque-Bera 0.000 
ADF 0.000 
PP 0.000 
KPSS 0.064 

Notes: Jarque-Bera, ADF, and PP respectively represent the p-values of Jarque-Bera, Augmented 
Dickey-Fuller, and Phillips-Perron tests. KPSS is the KPSS test statistic, and its critical 
values are 0.119, 0.146, and 0.216 at the levels of 10%, 5%, and 1%, respectively. 

 
3.2. Forecasting Procedure 

 
For direct comparison of results, this study uses the same forecasting 

methodology as Fernandes et al. (2014). Forecasts are made from a rolling window 
of a fixed size. For each model, a rolling window of 2,500 time-series observations is 
used to estimate the model, and 3,240 out-of-sample forecasts are produced 
(February 29, 2000 – January 15, 2013). Direct forecasts are made with no 
consideration of forecasting the exogenous covariates, as in Medeiros et al. (2019). 
Since the covariates are high-dimensional, it is natural to adopt the direct 
forecasting procedure, rather than the iterated forecasting procedure, for multi-step-
ahead forecasts.  

Four different forecasting horizons of k-day(s) (k=1, 5, 10, 22) are considered. k-
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day(s)-ahead forecasts are made and mean squared error (MSE) and mean absolute 
error (MAE) are calculated for each model and forecasting horizon. The average 
MSE and MAE of the random forest are compared to those of the benchmark 
models. 

 
3.3. Benchmark Models 

 
The benchmarks on which the results are compared are the models whose 

performances are reported upon in Fernandes et al. (2014); namely, they are the 
random walk (RW) model, Autoregressive model with exogenous variables (ARX), 
heterogeneous autoregressive (HAR) model of Corsi (2009), and HAR model with 
exogeneous variables (HARX). The model specifications follow those described in 
Fernandes et al. (2014). For the models including exogeneous covariates, the 14 
variables used in Fernandes et al. (2014) are used.3 In Section 4.4, as a robustness 
check, we also consider more machine learning methods. 

 
 

IV. Results 
 

4.1. Variable Rankings by the Boruta Algorithm 
 
For each forecasting horizon, the full dataset containing the first and second lag4 

of all 299 variables is run on the Boruta algorithm. Each lag of each variable is 
treated as a separate variable, with the total number of covariates being 598. Of the 
598 variables that were run on the Boruta algorithm, the number of variables 
confirmed to be ‘important’ are 138, 142, 147, and 123 for the 1-day-ahead, 5-days-
ahead, 10-days-ahead, and 22-days-ahead forecasts, respectively. Table 2 lists the 
rankings of the top-30 variables determined from the Boruta algorithm for each 
forecasting horizon.5  

Overall, the variability in the variable rankings among the different forecasting 
horizon settings does not seem to be large, especially for the variables ranked among 
the top-20. For all forecasting horizons, the lagged value of the logarithm of VIX 
recorded the largest mean Z-score, with quite a margin from the exogenous 
variables. In addition, for all forecasting horizon settings, the top-2 ranked  
 
____________________ 

3 The 14 variables are S&P k-day return, S&P 500 volume change, oil k-day return, trade-weighted 
USD change, credit spread, and term spread with k = 1,5,10,22,66. 

4 Following Fernandes et al. (2014), we consider the first and second lag of each covariate. One can 
use more lagged covariates. We also tried to use the full dataset containing additional third and fourth 
lag of all variables, and the results were similar. 

5 The full list of the rankings determined by Boruta is available upon request. 
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[Table 2] Variable Rankings Determined by Boruta Algorithm 
 

 
1-day-ahead 5-days-ahead 10-days-ahead 22-days-ahead 

1 CBOEVIX(1) CBOEVIX(1) CBOEVIX(1) CBOEVIX(1) 
2 CBOEVIX(2) CBOEVIX(2) CBOEVIX(2) CBOEVIX(2) 
3 BaaAaa(1) BaaAaa(1) BaaAaa(1) T10Y3M(1) 
4 BaaAaa(2) BaaAaa(2) BaaAaa(2) BaaAaa(1) 
5 T10Y3M(1) T10Y3M(1) T10Y3M(1) BaaAaa(2) 
6 T10Y3M(2) T10Y3M(2) T10Y3M(2) T10Y3M(2) 
7 SP_66day(1) SP_66day(2) SP_66day(1) SP_66day(1) 
8 SP_66day(2) SP_66day(1) SP_66day(2) SP_66day(2) 
9 SP_22day(2) SP_22day(2) Oil_66day(1) Oil_66day(2) 

10 SP_22day(1) SP_22day(1) SP_22day(1) Oil_66day(1) 
11 SP_10day(1) Oil_66day(1) SP_22day(2) SP_22day(2) 
12 SP_10day(2) Oil_66day(2) Oil_66day(2) SP_22day(1) 
13 SP_5day(1) SP_10day(2) SP_10day(2) SP_10day(2) 
14 Oil_66day(2) SP_10day(1) SP_10day(1) SP_10day(1) 
15 Oil_66day(1) SP_5day(1) SP_5day(1) SP_5day(1) 
16 SP_5day(2) SP_5day(2) SP_5day(2) SP_5day(2) 
17 S&P_1day(1) Oil_22day(2) Oil_22day(2) Oil_22day(2) 
18 S&P_MV(1) Oil_22day(1) Oil_22day(1) Oil_22day(1) 
19 S&P_1day(2) S&P_1day(1) S&P_1day(1) FITB(2) 
20 S&P_MV(2) S&P_MV(1) S&P_MV(1) FITB(1) 
21 Oil_22day(2) S&P_1day(2) S&P_1day(2) KEY(2) 
22 DJINDUS(1) S&P_MV(2) S&P_MV(2) AIG(1) 
23 Oil_22day(1) BAC(1) BAC(1) BAC(1) 
24 GE(1) DJINDUS(1) FITB(2) @HBAN(1) 
25 BAC(1) FITB(2) GE(1) AIG(2) 
26 NASA100(1) GE(1) FITB(1) BAC(2) 
27 BAC(2) BAC(2) AIG(2) S&P_1day(1) 
28 DAXINDX(1) DAXINDX(1) DJINDUS(1) KEY(1) 
29 GE(2) FITB(1) NASA100(2) S&P_MV(1) 
30 DAXINDX(2) DJINDUS(1) BAC(2) S&P_MV(2) 

Notes: The following are the abbreviations used. CBOEVIX: lagged values of the VIX index; 
BaaAaa: credit spread; T10Y3M: term spread; SP_kday: k-day(s) returns on the S&P 500 
index; Oil_kday: k-day(s) returns on oil futures; DJINDUS: daily returns on the Dow 
Jones Industrial Average; NASA100: daily returns on Nasdaq-100 Index; DAXINDX: 
daily returns on the DAX Performance Index; and S&P_MV: daily change in market 
volume of the S&P 500. All other abbreviations not mentioned correspond to the daily 
returns on individual S&P 500 composites, which are presented by their ticker symbols as 
listed on the New York Stock Exchange and the Nasdaq Stock Exchange. The numbers 
in parenthesis refer to the lag of each variable. 

 
exogenous variables were credit spread and term spread (credit spread ranked first 
for 1/5/10-day(s)-ahead forecast setting while term spread ranked first for 22-days-
ahead forecast setting). The list is followed by the continuously compounded 
multiple-days-returns on S&P 500 and oil futures and the daily change rate in the 
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S&P 500 index and the volume of the S&P 500. It is interesting to note that, aside 
from trade-weighted USD change, these top-20 variables roughly correspond to the 
14 exogenous variables used in Fernandes et al. (2014). 

The difference in rankings among the forecasting horizons seems to be more 
visible for variables ranked afterward, most of which are composed of daily returns 
on other stock market indices and daily returns on individual prices of S&P 500 
composites. For the 1/5/10-day(s)-ahead forecast settings, at least two of the three 
main stock market indices (NASDAQ-100, Dow Jones Industrial Average, and 
DAX Performance index) made it into the top-30 list. Comparatively, the list for 22-
days-ahead forecast setting is dominated by the daily return series of the individual 
S&P 500 composites. 

These rankings are used to select the best subset of variables. That is, the optimal 
number of top ranked variables is derived, and this is considered as the dataset to be 
used for random forest. 

 
4.2. The Optimal Number of Variables  

 
A cross validation procedure was conducted to determine the optimal number of 

variables to be used in a random forest method. The procedure is straight forward: 
First, start with a dataset with no exogenous variables using only the first and 
second lags of VIX as input variables into random forest. The dataset is run on the 
random forest and the in-sample OOB MSE is recorded. Next, add on to the dataset 
one exogenous variable at a time based on the order of the rankings decided by the 
Boruta algorithm in Table 2. Finally, record the in-sample OOB MSE from each 
dataset and find the number of variables that produces the smallest forecast error. 

Figure 3 plots the change in the in-sample error as the dataset is sequentially 
expanded for each forecasting horizon. For the 1-day-ahead forecast, the picture 
seems less clear as it does not show a visible optimal point in terms of OOB MSE. 
However, for the 5/10/22-days-ahead forecasts, the results show a clear increasing 
trend in OOB MSE after a minimal point. According to the results, the optimal 
number of variables are 25, 17, 17, and 11 for the 1/5/10/22-day(s)-ahead forecasts, 
respectively. Thus, among the 598 covariates that are considered, the best subset of 
variables is derived for forecasting VIX in a random forest method while using the 
top-25/17/17/11 ranked variables according to the mean Z-scores derived from the 
Boruta algorithm. 

 
4.3. Forecasting Results 

 
Table 3 shows the results of the out-of-sample forecasts of each model for each 

forecasting horizon. The table reports the average MSE, MAE, and their relative 
ratios compared to the RW model. Among the four benchmark models from  
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[Figure 3] Number of Variables and In-Sample OOB MSE 
 

 
Notes: For each forecasting horizon, the changes in in-sample out-of-bag (OOB) mean squared 

error (MSE) are plotted as variables that are added to the dataset based on the order of the 
rankings decided by the Boruta algorithm. 

 
Fernandes et al. (2014), the pure HAR model shows the best performance overall, 
except for the 22-days-ahead forecast horizon in which the HARX model records a 
smaller forecast error by a slight margin. Fernandes et al. (2014) claims that the 
relative success of the pure HAR model can be attributed to the very persistent 
nature of the VIX index, and that it is difficult to outperform the pure HAR 
process.6  

Comparing the above results to the performance of random forest on different 
datasets shows a substantially different picture. First, we consider a random forecast 
method using the same information as the benchmark models in Fernandes et al. 
(2014). The RF(14) in Table 3 shows the performance of random forest when using 
the dataset with only the exogenous covariates that were used by the benchmark  

____________________ 
6 Fernandes et al. (2014) also reports the forecasting results of the HAR model augmented with 

neural network (NNHARX). NNHARX outperforms HAR and HARX models only in the 22-days-
ahead forecast setting, but the difference in forecast errors is negligible and statistically insignificant. 
Thus, it can be said that their results show little evidence of non-linearity. 



Byung Yeon Kim ∙ Heejoon Han: Multi-Step-Ahead Forecasting of the CBOE Volatility Index 555

 
  

[T
ab

le
 3

] 
F

or
ec

as
tin

g 
Pe

rf
or

m
an

ce
s a

t D
iff

er
en

t H
or

iz
on

s 
 

 
M

SE
 

%
 

M
A

E
 

%
 

 
M

SE
 

%
 

M
A

E
 

%
 

 
M

SE
 

%
 

M
A

E
 

%
 

 
M

SE
 

%
 

M
A

E
 

%
 

 
O

ne
 D

ay
 A

he
ad

 
 

 
Fi

ve
 D

ay
s A

he
ad

 
 

 
T

en
 D

ay
s A

he
ad

 
 

 
T

w
en

ty
-t

w
o 

D
ay

s A
he

ad
 

R
W

 
0.

00
40

 
 

0.
04

58
 

 
 

0.
01

42
 

 
0.

08
91

 
 

 
0.

02
19

 
 

0.
11

15
 

 
 

0.
04

27
 

 
0.

15
40

 
 

A
R

X
 

0.
00

40
 

1.
00

 
0.

04
59

 
1.

00
 

 
0.

01
36

 
0.

96
 

0.
08

77
 

0.
98

 
 

0.
02

14
 

0.
98

 
0.

11
07

 
0.

99
 

 
0.

04
08

 
0.

95
 

0.
14

98
 

0.
97

 

H
A

R
 

0.
00

39
 

0.
97

 
0.

04
54

 
0.

99
 

 
0.

01
33

 
0.

94
 

0.
08

73
 

0.
98

 
 

0.
02

09
 

0.
96

 
0.

10
95

 
0.

98
 

 
0.

03
99

 
0.

93
 

0.
14

97
 

0.
97

 

H
A

R
X

 
0.

00
40

 
1.

00
 

0.
04

58
 

1.
00

 
 

0.
01

36
 

0.
96

 
0.

08
75

 
0.

98
 

 
0.

02
14

 
0.

98
 

0.
11

03
 

0.
99

 
 

0.
04

09
 

0.
96

 
0.

14
91

 
0.

97
 

R
F

(1
4)

 
0.

00
44

 
1.

10
 

0.
04

90
 

1.
07

 
 

0.
01

04
 

0.
73

 
0.

07
67

 
0.

86
 

 
0.

01
35

 
0.

62
 

0.
08

70
 

0.
78

 
 

0.
01

77
 

0.
41

 
0.

09
92

 
0.

64
 

R
F

(5
98

) 
0.

00
47

 
1.

19
 

0.
05

07
 

1.
11

 
 

0.
01

26
 

0.
89

 
0.

08
54

 
0.

96
 

 
0.

01
70

 
0.

78
 

0.
09

93
 

0.
89

 
 

0.
02

44
 

0.
57

 
0.

11
80

 
0.

77
 

R
F

_S
el

ec
te

d 
0.

00
44

 
1.

10
 

0.
04

92
 

1.
07

 
 

0.
00

98
 

0.
69

 
0.

07
44

 
0.

84
 

 
0.

01
25

 
0.

57
 

0.
08

37
 

0.
75

 
 

0.
01

52
 

0.
35

 
0.

09
16

 
0.

59
 

N
ot

es
: 

F
or

ec
as

tin
g 

pe
rf

or
m

an
ce

s 
of

 d
iff

er
en

t 
m

od
el

s 
fo

r 
th

e 
te

st
 p

er
io

d 
fr

om
 F

eb
ru

ar
y 

29
, 

20
00

 t
o 

Ja
nu

ar
y 

15
, 

20
13

 (
3,

24
0 

da
ily

 o
bs

er
va

tio
ns

). 
T

he
 

re
su

lts
 o

f t
he

 b
en

ch
m

ar
k 

m
od

el
s 

(R
W

/A
R

X
/H

A
R

/H
A

R
X

) 
ar

e 
de

ri
ve

d 
us

in
g 

th
e 

sa
m

e 
m

od
el

 s
pe

ci
fic

at
io

ns
 a

s 
th

os
e 

re
po

rt
ed

 in
 F

er
na

nd
es

 e
t a

l. 

(2
01

4)
. 

  



The Korean Economic Review  Volume 38, Number 3, Summer 2022 556

models in Fernandes et al. (2014). While the forecasting performance of RF(14) is 
even worse than the RW model for the 1-day-ahead forecast, the forecasting error 
drops significantly for 5/10/22-days-ahead forecasts compared to the pure and 
augmented HAR models. 

Moreover, the relative accuracy of random forest compared to the RW and the 
linear benchmarks becomes more evident as the forecasting horizon increases. That 
is, the gap in forecasting error between the benchmark models and RF increases as 
the forecasting horizon approaches the 30-calendar-days-ahead threshold. The 
relative MAE of RF(14) compared to the RW model are 1.08, 0.86, 0.78, and 0.64 for 
the 1/5/10/22-day(s)-ahead forecasting horizons, respectively. This corroborates the 
results of Medeiros et al. (2019) which find that the forecasting superiority of 
random forest compared to the linear models becomes more evident with longer 
forecasting horizons. 

The RF(598) in Table 3 shows the performance of random forest when the 
dataset includes all the first and second lags of 299 variables, whereas RF_Selected 
shows the performance of random forest using the dataset with the optimal number 
of the most important variables based on the Boruta algorithm, as derived through 
the variable selection process described in sections 4.1 and 4.2. The results show that 
selecting the optimal number of the most important variables using the Boruta 
algorithm further enhances the performance significantly. For the longer three 
forecasting horizons, RF_Selected is able to produce forecasts that are significantly 
more accurate than RF(14).7  

Table 4 lists the p-values of the unconditional Giacomini-White (2006) test at 
different forecasting horizons. For the 1-day-ahead-forecasts, the forecasting ability 
of HAR is compared to all other models. It can be seen that the outperformance of 
HAR model in this setting is significant at the 5% level.  

For the 5/10/22-days-ahead forecasts, the performance of RF is compared to those 
of the benchmark models. Using the same covariates, the superior accuracy of 
RF(14) is statistically significant at the 0.1% level compared to all linear benchmark 
models. Moreover, the superior predictive ability of RF_Selected is also significant 
at the 0.1% level compared to RF(14) and RF(598) . Thus, we can conclude that the 
gains from systematical variable selection using the Boruta algorithm is also 
statistically significant. 

Table 5 reports the test results of model confidence sets (MCS) of Hansen et al. 
(2011) at different forecasting horizons. The test is based on squared error losses. 
The shaded cells are the models included in the 50% MCS, along with their p-
values. The results are unambiguous, with only one model included in the MCS for 
____________________ 

7 We also calculated out-of-sample 2R  based on the Mincer-Zarnowitz regression. RF-Selected 
exhibits the highest 2R  for the longer three forecasting horizons. This result is not surprising 
because it is well known that out-of-sample 2R  based on the Mincer-Zarnowitz regression is 
equivalent to MSE if forecasts are unbiased. 
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each forecasting horizon, and all with a uniform p-value of 1. Thus, the HAR 
model seems to be the best model for the 1-day-ahead forecasts, while RF_Selected 
outperforms all other models for multi-day-ahead forecasts. 

 
[Table 4] Giacomini-White Test for Predictive Ability 
 

One Day Ahead  Five Days Ahead 
 HAR   RF_14 RF_Selected 

RW 0.0246  RW 0.0000 0.0000 
ARX 0.0056  ARX 0.0000 0.0000 
HARX 0.0008  HAR 0.0000 0.0000 
RF_14 0.0000  HARX 0.0000 0.0000 
RF_298 0.0000  RF_14  0.0000 
RF_Selected 0.0000  RF_298  0.0000 

       
Ten Days Ahead  Twenty-two Days Ahead 

 RF_14 RF_Selected   RF_14 RF_Selected 
RW 0.0000 0.0000  RW 0.0000 0.0000 
ARX 0.0000 0.0000  ARX 0.0000 0.0000 
HAR 0.0000 0.0000  HAR 0.0000 0.0000 
HARX 0.0000 0.0000  HARX 0.0000 0.0000 
RF_14  0.0000  RF_14  0.0000 
RF_298  0.0000  RF_298  0.0000 

Notes: The p-values of the Giacomini-White test for superior predictive ability between the HAR 
model and the other models for one-day-ahead setting, as well as between RF_14 & 
RF_Selected models and the other models for longer forecasting horizons. 

 
[Table 5] MCS Test Results 
 

Model Confidence Set 
 1-day 5-day 10-day 22-day 

RW     
ARX     
HAR 1    
HARX     
RF_14     
RF_298     
RF_Selected  1 1 1 

Notes: For each forecasting horizon setting, the shaded cells show the models that are included 
in the 50% Model Confidence Set (MCS), using squared error as the loss function. The 
MCS p-values are reported, where a higher p-value indicate that the model is more likely 
to be the “best” model. 

 
Figure 4 compares the forecasts of RF_Selected and the HAR model for the 

period around the 2008 global financial crisis, specifically for the time stretching 
from February 2008 to August 2009. The black line shows the actual value of 
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logarithmic of VIX, which reached its all-time peak in October 2008. The red and 
blue lines show the 22-days-ahead forecasts of RF_Selected and the HAR model, 
respectively. It can be seen that the forecasts by RF_Selected are more accurate than 
those of the HAR model. RF_Selected catches the sharp upward trend of VIX much 
faster after the collapse of Lehman Brothers in September 2008, and it does the 
same for the downward trend after the peak of the financial crisis. Overall, while the 
gap in forecasting error between the two models seem to be consistent over the 
whole forecasting period, it is in such highly volatile periods when the gap between 
the two models becomes much more evident.  

 
[Figure 4] Comparison of Forecasts Between RF and HAR Model 
 

 
Notes: The logarithm of VIX from February 13, 2008 to August 12, 2009 (black line), along with 

the 22-days-ahead forecasts of RF_Selected (red line) and HAR (blue line) models. 
 

4.4. Robustness Check with More Machine Learning Methods 
 
As a robustness check, we consider more machine learning methods and compare 

forecasts for the most recent 2-year period (January 2, 2019 to December 31, 2020, 
505 daily observations). We adopt the same forecasting procedure and a rolling 
window of the same size (2,500 daily observations) is utilized. Thus, the dataset of 
our second sample runs from January 27, 2009 to December 31, 2020 with a total of 
3,005 daily observations of all variables. 

Along with the benchmark models reported in section 4.3, the following ML 
methods are included as additional benchmarks; the least absolute shrinkage and 
selection operator (LASSO), adaptive LASSO (adaLASSO), elastic net (Elnet),  
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adaptive elastic net (adaElnet), complete subset regression (CSR), target factors 
(tFact), and a deep neural network (NN)8 with two hidden layers and 32 and 16 
nodes in each hidden layer. The model specifications of the ML benchmarks are 
described in Appendix A. 

For random forest, the same variable selection process as described in sections 4.1 
and 4.2 was used to determine the predictors for RF_Selected. The rankings of the 
variables decided by the Boruta algorithm show little variation from those reported 
in Table 2, particularly among the top-20 variables.9 From the cross-validation 
procedure, the optimal numbers of variables for RF are found to be 21, 12, 14, and 
14 for the 1/5/10/22-day(s)-ahead forecast horizons, respectively. 

Table 6 provides the forecasting results at different horizons. Among the 
benchmark models, the pure HAR model is no longer the outperforming model 
when the ML benchmarks are added. For the 1/5/10-day(s)-ahead forecasts, the 
CSR reports the smallest errors among the benchmarks. However, the difference 
compared to the rest of the benchmark models is quite minimal. For the 22-days-
ahead forecasts, the NN model records the smallest forecast error among the 
benchmark models. 

The comparison between RF and the benchmarks shows a picture that is in line 
with that of the previous section. While RF(14) performs worse than the RW model 
for the 1-day horizon, it produces forecasts that are more accurate than all other 
benchmark models in multi-days horizons. The Giacomini-White test results in 
Table 7 confirm that the predictive ability of RF(14) is superior to those of the 
benchmarks for the multi-step-ahead settings. For the 5-days horizon, the null 
hypotheses of equal predictability between RF(14) and the benchmarks are rejected 
at the 5% significance level, except for two cases (against LASSO and adaElnet) 
where they are only rejected at the 10% level. For the 10-days and 22-days horizons, 
RF(14) outperforms all benchmark models at the 1% level. 

Moreover, as was the case in the previous section, the gap in forecast error 
between RF and the linear benchmark models is magnified for the longer 
forecasting horizons. The relative MAE of RF(14) to the RW model are 1.06, 0.90, 
0.73, and 0.60 for the 1/5/10/22-day(s) horizons, respectively. 

The accuracy of RF_Selected demonstrates the benefits of using the Boruta 
algorithm for variable selection. For the multi-step-ahead forecasts, RF_Selected is 
clearly the outperforming model overall with the smallest forecast error. In the 5-
day horizon, the Giacomini-White test between RF_Selected and all other models 
except RF(14) is rejected at the 5% level. For 10-day and 22-day horizons, 
RF_Selected significantly outperforms all other models including RF(14) at the 1% 

____________________ 
8 The optimal numbers of layers and nodes for NN are decided in advance based on cross 

validation procedures. 
9 The rankings from the Boruta algorithm for the second sample are available upon request. 
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level. Moreover, RF_Selected is the only model included in the 50% MCS with a p-
value of 1 for the multi-step horizons. 

 
[Table 7] Giacomini-White Test for Predictive Ability (Second Sample) 
 

One Day Ahead  Five Days Ahead 
 CSR   RF_14 RF_Selected 

RW 0.0002  RW 0.0185 0.0031 
ARX 0.1001  ARX 0.0434 0.0157 
HAR 0.0023  HAR 0.0043 0.0013 

HARX 0.0350  HARX 0.0476 0.0175 
LASSO 0.1111  LASSO 0.0525 0.0260 

adaLASSO 0.0027  adaLASSO 0.0488 0.0186 
Elnet 0.1858  Elnet 0.0477 0.0245 

adaElnet 0.0483  adaElnet 0.0519 0.0186 
tFact 0.2086  CSR 0.0293 0.0123 
NN 0.0000  tFact 0.0032 0.0012 

RF_14 0.0000  NN 0.0002 0.0000 
RF_298 0.0000  RF_14  0.1281 

RF_Selected 0.0000  RF_298  0.0000 
       

Ten Days Ahead  Twenty-two Days Ahead 
 RF_14 RF_Selected   RF_14 RF_Selected 

RW 0.0000 0.0000  RW 0.0000 0.0000 
ARX 0.0001 0.0000  ARX 0.0021 0.0011 
HAR 0.0000 0.0000  HAR 0.0008 0.0009 

HARX 0.0002 0.0000  HARX 0.0026 0.0013 
LASSO 0.0010 0.0001  LASSO 0.0025 0.0017 

adaLASSO 0.0002 0.0000  adaLASSO 0.0014 0.0008 
Elnet 0.0016 0.0002  Elnet 0.0026 0.0019 

adaElnet 0.0001 0.0000  adaElnet 0.0015 0.0008 
CSR 0.0000 0.0000  CSR 0.0006 0.0006 
tFact 0.0010 0.0001  tFact 0.0015 0.0007 
NN 0.0000 0.0000  NN 0.0001 0.0000 

RF_14  0.0010  RF_14  0.0020 
RF_298  0.0000  RF_298  0.0010 

Notes: The p-values of the Giacomini-White test for superior predictive ability between the CSR 
model against the other models for one-day-ahead setting, as well as between RF_14 & 
RF_Selected models against the other models for multi-days-ahead forecasting horizons. 
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[Table 8] MCS Test (Second Sample) 
 

Model Confidence Set 
  1-day 5-day 10-day 22-day 

RW 1    
ARX 0.7112    
HAR 0.9844    
HARX 0.5536    
LASSO 0.9660    
adaLASSO 0.9950    
Elnet 0.7202    
adaElnet 1    
CSR 1    
tFact 1    
RF_14     
RF_298     
RF_Selected  1 1 1 

Notes: For each forecasting horizon setting, the shaded cells show the models that are included 
in the 50% Model Confidence Set (MCS), using squared error as the loss function. The 
MCS p-values are reported, where a higher p-value indicates that the model is more likely 
to be the “best” model. 

 
 

V. Conclusion 
 
The paper seeks to apply random forest and its variable importance measure to 

forecasting the CBOE Volatility Index (VIX). In particular, it seeks to improve 
upon the multi-days-ahead forecasting of VIX relative to those reported in the 
previous literature. Compared to the results of Fernandes et al. (2014), which find it 
is very hard to beat the pure HAR process in forecasting VIX, random forest could 
produce forecasts that are significantly more accurate than the HAR and augmented 
HAR models for multi-days forecasting horizons. Moreover, the superior 
predictability of random forest compared to the RW and benchmark linear models 
becomes more apparent as the forecasting horizon becomes longer. This is 
consistent with Medeiros et al.’s (2019) findings in the context of forecasting US 
inflation. 

Further improvements in forecasting performance are attained through a 
systematic selection of covariates among a high-dimensional dataset. Utilizing the 
Boruta algorithm, the rankings of the variables are extracted based on the 
permutation importance measure of random forest. Adopting only the optimal 
number of the selected most important covariates significantly enhances the 
forecasting accuracy of random forest. It seems clear that variable selection 
functions as a crucial factor affecting the predictability of random forest.  

The robustness of the main results of the paper are confirmed through 
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forecasting on the most recent period from 2018 to 2020. Moreover, compared to 
various other ML methods, the random forest method utilizing the Boruta 
algorithm provides superior multi-step-ahead forecasts.  

While this paper focuses solely on the random forest, it would be interesting to 
investigate other ML methods that can capture the nonlinear characteristics of VIX, 
especially deep learning methods such as long short-term memory. It would also be 
interesting to investigate whether our methodology can provide better multi-step-
ahead forecasts of macroeconomic time series. These issues represent future 
research topics. 
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Appendix A 
 

1. The Shrinkage Methods 
 
To improve ordinary least squares (OLS) regression, the family of shrinkage 

methods takes the form of penalized regression. This is similar to an OLS 
regression in that the objective is to minimize the residual sum of squares (RSS), 
but they add a term that imposes a size constraint on the coefficient estimates;  
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The different models among these methods are distinguished by the penalty 

function ( ; )jp b l , which regularizes the coefficient estimates and shrinks the 
coefficients of variables with less explanatory power. The shrinkage penalty term 
depends on the tuning parameter l , which regulates the amount of shrinkage 
imposed on the coefficients; a higher l  results in a stronger shrinkage of the 
regression coefficients, while 0l =  would reduce the model to an OLS with no 
shrinkage. 

 
1.1. Least Absolute Shrinkage and Selection Operator (LASSO) 
 
LASSO was proposed by Tibshirani (1996), in which the penalty function is 

given as 
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Compared to the primitive shrinkage method—ridge regression, described by 

Hoerl & Kennard (1970)—the 1L  penalty of LASSO is able to shrink the less 
relevant variables to exactly zero via soft thresholding, and it thus presents the 
feature of variable selection. Moreover, due to the absolute value operator in the 
penalty term, LASSO does not have a closed form solution, and it is computed 
through algorithmic methods. 

 
1.2. Adaptive LASSO 
 
Consistency of variable selection by LASSO is only achieved under strict 

conditions, and Zou (2006) proposed the adaptive LASSO to overcome this issue. 
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The penalty term includes a weighting parameter that is derived from a first-step 
estimation. The penalty function is given as 
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where adaptive weights ¶

11| |
j

jw
b

-=  are used to penalize different coefficients in 

the LASSO penalty. Adaptive LASSO can be solved through the same efficient 

algorithm used to solve LASSO. 
 
1.3. Elastic Net 
 
The elastic net is a compromise between ridge regression and LASSO. While it 

retains the variable selection feature of LASSO, it also shrinks the coefficients of 
correlated variables toward each other similar to the ridge regression. The penalty 
function takes the form of a weighted mean of ridge and LASSO penalties: 
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The elastic net includes the special cases of LASSO ( 0a = ) and ridge regression 
( 1a = ). In this paper, the a  parameter is set to be 0.5. This paper also considers 
an adaptive version of elastic net which includes adaptive weights as in adaptive 
LASSO. 

 
2. Complete Subset Regression  

 
Another possible approach to handling a high-dimensional dataset is subset 

selection for linear regression. While there are a number of strategies that can be 
used for subset selection, testing all possible combinations of predictor variables is 
computationally demanding and becomes infeasible when there is a very large 
number of candidate variables.  

Complete subset regression (CSR) proposed by Elliott et al. (2013, 2015) takes an 
ensemble approach. For a given set of potential regressors, CSR combines forecasts 
from all possible linear regression models while keeping the number of predictors 
fixed. For a dataset with K possible regressors, the number of k-variate models 
( k K£ ) is !

, (( )! !)
K

k K K k kn -= . The set of models for a fixed value k is referred to as a 
complete subset, and the final forecast made by CSR is the equal-weighted average 
of forecasts from all models within the complete subset indexed by k . In this paper, 
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we use 4k =  to calculate the CSR forecasts. 
   

3. Target Factors  
 
Numerous forecasting methodologies using factor augmented models have 

recently been developed. The idea of these factor models is to first estimate the 
factors from a large number of predictors using the method of principal components, 
and then to augment these factors to a linear forecasting equation. To refine the 
factor augmented forecasting methodology, Bai & Ng (2008) proposed targeting the 
predictors using hard and soft thresholding rules. The underlying rationale is that 
computing the principal components from all predictors may result in noisy factors, 
and that only the predictors with high forecasting power should be used.  

This paper uses the hard thresholding method suggested in Bai & Ng (2008) and 
implemented by Medeiros et al. (2019). Let iy  be the dependent variable or the 
logarithm of VIX, let ( 1, , )j j pX = K  be the candidate predictors, and let iW  be a 
set of controls. Following Bai & Ng (2008), the lagged values of iy  and a constant 
are used as iW . 

1. For 1, ,j p= K , perform a regression of i hy +  on iW  and jX  and compute 
the t-statistics corresponding to the coefficient of jX . 

2. Choose a significance level a  and find the set of significant variables ( )iz a  
based on the computed t-statistics. 

3. Estimate the factors iF  from ( )iz a . 
4. Regress i hy +  on iW  and if , where i if FÌ  and the number of factors in 

if  is decided using BIC. 
 

4. Computation and Codes 
 
All ML methods in Section 4 are estimated in R using standard and well-

established packages. The R codes are available online at https://github.com/ 
bryank2242/Forecasting-VIX. We modified the R codes provided by Medeiros et al. 
(2019), which are available online at https://github.com/gabrielrvsc/. Readers are 
referred to Section 4.7 in Medeiros et al. (2019) for more details of computer codes 
and tuning parameters. The Boruta package is available at https://cran.r-
project.org/web/packages/. 
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풍부한 데이터를 활용한 CBOE 변동성 지수(VIX) 예측: 

보루타 연산(Boruta algorithm)과 랜덤 

포레스트(random forest)의 적용* 

김 병 연** ∙ 한 희 준*** 

10 

 
 

시카고 옵션거래소(CBOE) 변동성 지수(VIX)는 향후 미국 주식시장 변
동성에 대한 투자자들의 기대를 반영하는 지표로서, 오늘날 금융시장의 
변동성과 전반적인 심리에 대한 대표적인 척도이다. VIX 지수 예측과 관
련한 기존 논문들은 단순한 HAR(Heterogeneous Autoregressive) 모
형의 예측력이 우수하다는 것을 보였는데, 대부분의 경우 예측에 사용한 
설명변수들의 개수가 제한되어 있고 또한 1단계 앞 예측(one-step-
ahead forecasting)만을 고려하고 있다. 본고는 고차원(high-
dimension)의 설명 변수(총 298개의 거시/금융 변수)를 사용하면서 다
양한 기계학습(machine learning) 기법들을 적용하여 VIX 지수의 다단
계 앞 예측(multi-step-ahead forecasting)을 분석한다. 특히 랜덤 포
레스트(random forest) 환경에서 변수 선택(variable selection)과 최적 
변수의 개수를 결정하는 새로운 방법을 제시하고, 이 방법이 다단계 앞 
예측(multi-step-ahead forecasting)에 우수함을 보이고 있다. 구체적
인 예측 절차는 1) 보루타 연산(Boruta algorithm)을 통해 변수 중요도
(variable importance)의 순위를 도출하고, 2) 교차 검증(cross 
validation)을 통해 최적 변수의 개수를 결정하고, 3) 중요도가 높은 변
수들을 2)에서 정해진 개수만큼만 사용하여 랜덤 포레스트를 실시하는 
것이다. 다양한 표본 기간 및 예측 기간을 고려해도, 이 방법을 통해 통
계적으로 유의하게 우월한 VIX 지수의 다단계 앞 예측치(multi-step-
ahead forecast)들을 구할 수 있음을 보이고 있다. 

 

핵심 주제어: 랜덤 포레스트, 보루타 연산, 기계학습, VIX 지수, 변동성 예측 
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