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Abstract

We propose a theory of unequal social norms, or conventions, where unequal prac-
tices persist over long periods of time despite being inefficient and not supported by
formal institutions. We extend the standard asymmetric stochastic evolutionary game
model to allow sub population sizes to differ and idiosyncratic rejection of a status
quo convention to be intentional to some degree (rather than purely random as in
the standard evolutionary models), consistent with historical cases. In this setting, if
idiosyncratic play is sufficiently intentional and the subordinate class sufficiently large
relative to the elite, then risk-dominated conventions that are both unequal and inef-
ficient relative to alternative conventions can be stochastically stable and will persist
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1 Introduction

Unequal social norms have been ubiquitous over long periods of history. Systems of caste and

racial exclusion, conventions governing labor markets, norms regulating relations between

men and women, and linguistic practices such as honorific pronouns have emerged and per-

sisted in highly varied environments, and appear to be favored in the historical dynamics by

which social structures evolve. Unequal social conventions appear to be what the sociologist

Talcott Parsons termed an “evolutionary universal” (Parsons, 1964). Two classes of reasons

are often offered to explain why this might be so.

First, unequal social norms may contribute to the evolutionary success of individuals

or groups that adopt them under the relevant technological, biological, or environmental

constraints. For example, Becker (1981) argued that gender norms around the household

division of labor may have been historically adapted to reflect comparative advantage. How-

ever, given the abundant evidence of adverse effects of historically durable cultural norms

on economic development,1 it is difficult to believe that efficiency considerations provide an

adequate explanation.

Second, even in the absence of any resulting efficiency advantage, the persistence of

unequal social norms may simply be the result of unequal laws and institutions, reflecting

the political power and coordinated collective action of elites who benefit from the norms

(Acemoglu and Robinson, 2008). But the very long term persistence of many unequal norms

and institutions – crop sharing conventions (Young and Burke, 2001)and linguistic markers

of superior and subordinate status (Clyne et al., 2009), for example – cannot adequately

be explained as the result of deliberate de jure interventions from above by elites. The

substantailly uncoordinated emergence of novel social norms are often harbingers of major

changes in social inequality appearing well before being institutionalized formally in law or

policy.

Here we suggest a third (possibly complementary) mechanism, showing that unequal

social arrangements may emerge and persist over long periods without the intervention of

elites, and in cases in which alternative institutions would be more efficient. Like the top

1See (Edgerton, 1992) for numerous examples of maladaptive practices in small-scale societies and (Nunn,
2014) for a review of the economics literature.
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down approach, our model identifies conditions under which inefficient economic institutions

that implement high levels of inequality persist in the long run. But we do not posit aggregate

representative agents bargaining over institutions, and neither commitment problems nor

concentration of political power in elite hands play any role in our approach.

Instead we study the way that customary and expected patterns of behavior, including

asymmetric norms governing relations between racial groups, genders, and economic classes,

can constitute a decentralized mechanism by which inequality can be implemented and per-

petuated. These unwritten rules structure regular, asymmetric interactions, endure for long

periods of time despite not being codified in formal laws and regulations and not convey-

ing any efficiency advantages to individuals or groups. Further examples include community

standards for female labor force participation (Alesina et al., 2011), customs governing inher-

itance (Goody et al., 1976), conventions of wage-setting (Bewley, 1999), informal economic

norms of property (Silbey, 2010) and legal contracting (Gulati and Scott, 2012). In an em-

pirical application of the bottom up approach developed here (Naidu et al., 2017) we study

the evolution of linguistic conventions (illustrated by the asymmetrical use of “vous”, “tu”

and other pronouns), building on classic work in the sociolinguistics of inequality (Brown

and Gilman, 1960).

In our model unequal informal conventions persist because they are stable Nash equilibria

in an evolutionary asymmetric coordination game, adherence to which is a best response

for members of both the privileged and the subordinate members of a society as long as

most others do the same. Transitions to less unequal conventions may occur as a result of

the chance bunching of challenges to the status quo by a sufficiently large fraction of the

subordinate class. These new conventions then endure, as for example, in the case of fair

wage norms: Hanes (1993) shows that nominal wage rigidity during the 1893 downturn was

higher in U.S. cities that experienced larger strike waves in the mid-1880s. But because

strikes and other acts of defiance are rare, we can show that transitions to more equal

conventions are less likely to occur when the less well off class is more numerous than the

elite, which empirically is often the case.

Evolutionary game theory has been used extensively for modeling and selecting among

equilibrium conventions that emerge from decentralized interactions in a large network of
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low-rationality agents (Foster and Young, 1990; Kandori et al., 1993). It is particularly

well suited to model the evolution of norms, culture, and traditional informal contracts that

are not maintained by the state or explicitly negotiated among a few collective actors, but

instead emerge at the population level. In these models the long-run stability of a convention

is determined by which equilibrium is more robust in the face of possible disruption due to

idiosyncratic non-best-response play. This can depend on state-dependent idiosyncratic play

as in Bergin and Lipman (1996), on network topology as in Young (2011) and Kreindler and

Young (2011), and other local interactions, as in Ellison (1993), all of which not only provide

a empirically grounded dynamic, but also accelerate the otherwise implausibly long waiting

time for transitions between conventions.

But asymmetric social conventions may be better modelled by an enriched evolutionary

dynamic more consistent with the history of stasis and transformation of unequal conven-

tions. Our extension to the standard model concerns the representation of the idiosyncratic

play that generates transitions among conventions. In the standard model deviance from the

best response is analogous to mutation in a population genetics model that is, an undirected

chance event.

For many, perhaps most, applications to historical transitions we find this formulation

problematic, for two reasons. First, as we will see below, the implied process of change—

which actors’ deviant actions induce a transition—is empirically implausible. Second, histor-

ical transitions between conventions have been driven not so much by mistakes but instead by

what might be termed intentional idiosyncratic play, namely actions that are not a best re-

sponse to the status quo but that would benefit the actor if sufficiently many of the members

of his class did the same.

The kinds of deviance that account for bottom up transformations of an unequal conven-

tion, and that we would like to model include Rosa Parks’ refusal to give up her seat at the

front of the bus, the Soweto school children who boycotted classes in protest of apartheid,

and the 14th century British farmers who simply refused to perform the labor duties owed to

their lord. These actions are idiosyncratic not because they are literally random but because

they occur for reasons outside the model. We are not attempting to model the complex

process of collective action in social movements, instead we examine what conventions are

4



stochastically stable when the process generating transitions between conventions resemble

social movements.

We do not explore these reasons—intentional idiosyncratic play is a primitive of our mod-

eling strategy—but they include outrage, a quest for personal dignity through opposition to

injustice and other motives not necessarily tied to the objective of inducing a transition

(Wood, 2003). The intentionality we introduce is simply directional: the 14th century farm-

ers do not deviate by insisting on providing more than the conventional labor services to the

lord.

To introduce this minimalist conception of intentionality (extending our in Bowles (2004)

and Naidu, Hwang, and Bowles (2010)), we generalize the noise process accounting for id-

iosyncratic play to allow for a variable degree of intentionality ranging from entirely uninten-

tional (as in the standard model) to entirely intentional, in which case an agent never plays

idiosyncratically when their preferred convention is the status quo. This relatively simple

extension of the standard framework increases the applicability of evolutionary models to

many more historical examples of endogenous cultural change.

Taking account of the intentional nature of idiosyncratic play allows us to address what

appears to be a restrictive and possibly anomalous aspect of the standard unintentional

noise-like treatment of idiosyncratic play. In the standard case, transitions from unequal

to equal conventions are always driven by the cumulative non best response play of the

better-off group, who would collectively lose from the transition, not by the deviance from

the unequal norm by the poor, who would benefit (Bowles, 2004). While one can imagine

a transition resulting, for example, from landlords idiosyncratically asking their tenants to

pay less than the conventional crop share, we think that the empirically more relevant case

would be when the tenants idiosyncratically insist on paying less than the norm. In our

model, transitions arise from cumulative deviations of the disadvantaged group, more in line

with historical experience, as our examples will illustrate.

Two further apparent anomalies follow as a consequence: larger populations, and those

with lower rates of non-best-response play are favored in this dynamic. The reason in both

cases is that large population size and less frequent deviance means that a population’s

own idiosyncratic play is less likely to induce a transition which, if it occurred, would be
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away from their favored convention. The conventional approach for modelling transitions

seem inappropriate in contexts where agents understand their group interest, so that their

idiosyncratic play is likely to be limited to those strategies that would yield a higher payoff

were a sufficiently large number of others to do the same.

Introducing what we term “directed idiosyncratic play” alters the resulting dynamic and

the equilibrium selection processes in bargaining games. In an asymmetric coordination

game between members of different groups bargaining over conventional contracts (e.g. seg-

regation norms or crop shares), Young (1998b) shows that conventional contracts that are

selected in an evolutionary dynamic subject to small random shocks implements the Kalai-

Smorodinsky solution. Exploiting the properties of risk-dominant payoffs in coordination

games, his contract theorem has the striking implication that evolution favors conventions

that are not only efficient, but also have the Rawlsian property that the payoffs of the least

well off are maximized, relative to the maximum they could get in any of the feasible set of

contracts.

In contrast, our main results give conditions for the stochastic stability of risk-dominated

conventions, which can be both unequal and inefficient (in the sense of a lower joint surplus)

relative to the alternate convention. Beginning with the random matching environment that

is standard in this literature, Proposition 1 shows that when idiosyncratic play is sufficiently

intentional and the relative size of the less well off group is sufficiently great, a risk-dominated

convention will be stochastically stable: Unequal social norms can persist (in competition

with less unequal conventions) without political inequality and without efficiency advantages.

We then show that this result remains true under the uniform local matching protocol studied

in Ellison (1993).

Building on the link between risk-dominance and the equity-efficiency result in Young

(1998b), this shows that if the poor class has either a low idiosyncratic play rate or is

relatively large, then conventions that are unequal and inefficient can persist for extremely

long periods. More precisely, Proposition 1 shows that when idiosyncratic play is sufficiently

intentional and group sizes and idiosyncratic play rates are sufficiently asymmetric, the risk-

dominated convention is stochastically stable in a standard environment with either uniform

or local random matching.
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Finally, we provide a framework that can account for the strongly networked aspects of so-

cial movements which are prominent in many historical unequal-to-equal transitions(McAdam,

1986). We provide conditions on an interaction network under which risk-dominated conven-

tions are stochastically stable when play is intentional and relative population size and rates

of idiosyncratic play are highly asymmetric. Jackson and Watts (2002) show that network

structure can drastically alter which states are stochastically stable, while Young (2011)

shows that network topology determines the speed of adoption of the efficient strategy in a

symmetric coordination game on networks. We generalize Young (2011) and the concept of

network “cohesiveness”(Morris, 2000) to asymmetric coordination games.

2 Equilibrium Selection in Contract Games

2.1 Contracts

Our model is deliberately both abstract and simple. We consider distributional conventions

such as feudal obligations between lords and serfs, segregation in the U.S. South, gender

division of labor, and linguistic modes of address as strategies in a 2×2 game. What distin-

guishes conventions from simple divisions of output is that the payoff to non-cooperation is

0, as we think of the strategies as themselves “rules of the game”, about which there must be

agreement in order for any productive coordination to occur. Mis-coordination results in no

productive joint activity. While one can imagine different groups facing different off-diagonal

payoffs (benefits and costs of mismatch, for example due to violent enforcement of norms

or government sanctions), we follow the literature on evolution in coordination games and

leave a study of such asymmetry to future work. While extremely simple, this setup allows

us to focus on the structure of idiosyncratic play and population interactions rather than

traditional economic trade-offs. We will call these distributional conventions “contracts”,

which must be agreed upon by both “rich” and “poor” for any production to occur. This

could be the norm around bus seating (as in the U.S. South), the number of days pledged

in feudal obligations, or the distribution of household labor between men and women.

We consider a large population consisting of two groups whose members myopically play
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U E
U aP , aR 0,0
E 0,0 b, b

Table 1: Payoffs in the Contract Game. P gets the row payoffs, R gets the column
payoffs. Note that because aP < b < aR so Rs strictly prefer the unequal contract (U,U)
while P s strictly prefer the equal contract (E,E).

an asymmetric 2×2 contract game with 2 pure-strategy Nash equilibria. Both contract equi-

libria are Pareto-optimal but one has higher total payoff than the other. They differ as well

in the distribution of the surplus that they implement. To illustrate the kinds of contracts

among which decentralized selection may take place, suppose the Rs (column players in our

game matrix) are landowners, men, whites, or employers while P s (row players) are tenants,

women, African-Americans, or workers. Contract E is a relatively equal sharecropping or

profit-sharing contract, yielding payoff b to both poor and rich agents, while Contract U is

an unequal fixed rental or wage contract, yielding payoffs aP and aR to the poor and the

rich agents, respectively. We furthermore assume that aP < b < aR, which means that Rs

prefer the unequal contract U while P s prefer the equal contract E. The risk-potential of

each contract is given by the product of the payoffs, so U is risk-dominant if aRaP > b2.

We can represent the payoffs from a contract as a 2 × 2 game matrix, as in Table 1, where

πP (i, j) (or πR(i, j)) is the payoff to a poor agent (or a rich agent) when the poor agent plays

strategy i against the rich’s strategy j.

The US Southern Jim Crow convention, which we return to below, would have U being

the convention of unequal bus seating or modes of address, with whites playing U by sitting

at the front or addressing black men as “boy”, and blacks playing U by sitting at the back or

addressing white men as “Sir”. The E convention could be that seating would be allocated

on first arrival. So if a white respected the norm of first arrival while the society was in the

U equilibrium, it would prevent the bus from moving as readily as a black man sitting on

the seat he encountered first, as described by the 0 off-diagonal payoffs.
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2.2 Best-Response Dynamics with Intentional Deviations

To focus on main results and intuitions, we first introduce a simple convention selection

dynamic for the contract game in Table 2.1, which we call a uniform interaction model (see

also Section 4 for the local interaction model on bipartite networks). Suppose the rich

population has size NR and the poor population has size NP .

We parameterize the effective relative population size with η, where NP = η × NR

and ηNR is assumed to be a positive integer for generic η. η captures both the relative

population size of the poor as well as the possibly lower rate of non-best-response play. As

we show in Naidu, Hwang, and Bowles (2010), population size and rate of idiosyncratic

play are functionally equivalent from the perspective of stochastic stability. A small relative

population of poor agents generates a high probability of a sufficiently large fraction deviating

at the same time, inducing a transition, as does a fast rate of idiosyncratic play.

A state is given by a number for each population (X, Y ), where X (or Y ) is the number

of poor (or rich) agents using strategy U . We assume that agents from each population

are randomly matched to play the game, so that every agent in each population has an

equal probability of interacting with every agent in the other population each round. For

example, the bus segregation convention would be the convention where the P class gives

up their place to a R agent, and so the payoffs to the P agent are lower than in the equal

(unsegregated) convention E, which are in turn lower than the payoffs from the R agents in

the segregated convention. Thus, the expected payoffs to a poor agent (UP ) and to a rich

agent (UR) using strategy i are given by

UP (i, Y ) = πP (i, U)Y + πP (i, E)(NR − Y ) and UR(j,X) = πR(U, j)X + πR(E, j)(ηNR −X)

respectively. The (myopic) best responses for agents, which we assume are uniquely deter-

mined, are denoted by BP (Y ) and BR(X) and given by:

BP (Y ) := arg max
i∈{U,E}

UP (i, Y ), and BR(X) := arg max
j∈{U,E}

UR(j,X)

Our primary theoretical contribution in this paper is to explore the implications of idiosyn-
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cratic play that is “intentional” in a sense we make precise in this section. Social conventions

may be upset by activists who deviate from the population-level best-response in a directed

fashion namely by taking an action that would benefit all members of their group were suffi-

ciently many to deviate in the same way. This restriction that we impose on noisy behaviors

leads us to call them collective action shocks, despite consisting of independent draws across

individuals.

We think of these as forms of decentralized social conflict (Scott, 1985) where one actor

incurs a cost by playing a strategy which is not a best-response, but would yield a higher

payoff were it to become an equilibrium. Thus we consider our collective action shocks a

reduced form way of incorporating activities such as strikes and lockouts, legal prosecutions,

land invasions and evictions. The non-best-response play can be considered collective action

because it uses the strategy that would yield a higher payoff for the group, were all agents to

play it, but the shocks are independent across individuals2, so it is only when a large enough

set of agents is simultaneously perturbed that the equilibrium changes.

We interpret the intentional ε as the probability of engaging in collective action by playing

the strategy that would be best for that class were it to be played by both classes in equilib-

rium. We describe the stochastic process more fully and apply it to a more general class of

bargaining games in Naidu, Hwang, and Bowles (2010). While unintentional idiosyncratic

play is plausible for many changes in conventions, as we will show, it has some restrictive

properties that make it ill-suited as a general model of transitions between equilibria. We

thus generalize this to allow errors to be parameterized by a degree of intentionality ι. ι = 1

will correspond to the standard unintentional idiosyncratic play structure. When ι is large,

however, agents are much more likely to systematically play strategies that would yield larger

payoff were they to become Nash equilibria. As we are interested in the long-run equilibrium

selection implications of this historically plausible modification to the evolutionary model,

we do not present detailed microfoundations for this intentionality here.3

2In reality, collective action shocks are likely to be at least weakly correlated across individuals, but we
abstract from that in this part of the paper. Our model illustrates the dynamics of social change without a
coordination mechanism, and thus serves as a benchmark model for extensions which do try to model more
coordinated social action.

3Parallelling the analysis in van Damme and Weibull (2002), one could posit the existence of leadership
or organizations for both populations, who would like to have all their members play their most preferred
contract, but have control costs when trying to induce agents to deviate from their best-responses. Then the
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Our specification of idiosyncratic play is also consistent with recent experimental work.

Lim and Neary (2016) find that individual mistakes depend on the myopic best-response

payoff and are directed in the sense of being group-dependent. The directed mistakes in

their paper are intentional idiosyncratic behaviors of deviant agents and, for example, they

find that 2.25% of subjects play mistakes when the best response is the preferred strategy,

while 20.85% of subjects play mistakes when the best response is the less preferred strategy

(Figure 5 (a) on pp. 19). In a lab experiment with evolutionary games, Mäs and Nax (2016,

pp. 204) similarly find that the vast majority of decisions (96%) are myopic best responses,

but deviations are sensitive to their costs. Specifically, they report that “deviation rates were

significantly lower when subjects faced a decision where the MBR (myopic best response)

was the subjects preferred option, which lends support to the assumption that deviations

can be directed” (see also Hwang et al. (2018)).

To capture these intentional collective action shocks in a reduced-form way, we suppose

that at each period, one agent is drawn from either the rich population or the poor population

and this drawn agent has a chance to demand a new contract with the following probability:

P agent chooses

BP (Y ) with probability 1− ε− ει
U with probability ει

E with probability ε
R agent chooses

BR(X) with probability 1− ε− ει
U with probability ε
E with probability ει

(1)

where 0 := ε∞ and ι is the parameter characterizing the degree of intentionality as follows.

First observe that when ι = 1, the mistake model in 1 gives the “uniform mistake model” in

which every mistake is equally likely—one of most popular mistake models in the standard

stochastic evolutionary game theory models. Thus agents make mistakes independently of

their preferences over contracts and we call this the unintentional model. Our formulation

of the perturbations in (1), when ι > 1, is the key difference between how noise is generated

in our model and the standard stochastic evolutionary game theory models.4

idiosyncratic play probabilities are the optimal choices of the organizations/leaders subject to these control
costs.

4Even though we use a specific parametrization of ε, a more flexible formulation is straightforward. For
example, we can define the probability that P agents choose U (or R agents choose E) to be φ(ε) such that
εφ′(ε)/φ(ε)→ ι as ε→ 0, with ι being interpreted the “elasticity” of intentionality with respect to the rate
of idiosyncratic play ε as ε approaches 0.
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2.3 Equilibrium Selection under Random Matching

To build intuition and as a benchmark case, we begin by determining which Nash equilibrium

is stochastically stable when agents interact randomly with all members of the opposing

population. To do this we call the state in which every agent plays U (or E) the U convention

(or the E convention). These states are precisely the absorbing states in the unperturbed

process. We show that the Markov chain defined by (1) admits a unique invariant measure

in a more general setting in Lemma 1 below. The stochastically stable state is the state

which has a positive mass of the invariant measure at ε → 0. Stochastic stability thus

can be studied by determining the number of idiosyncratic players it takes to upset each

convention (Young, 1993a; Kandori et al., 1993; Young, 1998b). In the literature, these costs

of transition, also called resistances, govern the speed of transitions from one convention to

the other.

While we provide formal definitions below, here we describe the general intuition. First

suppose that the status quo convention is U , the unequal convention that favors the Rs. If

sufficiently many idiosyncratically playing P s demand contract E rather than the status quo

contract U , best responding Rs will switch to offering contract E in the subsequent period.

By letting p be the fraction of idiosyncratic players in the P class, and equating Rs’ expected

payoffs from sticking with the U contract or shifting to the E contract, we see that the R

class agents will play E as their best responses if (1− p)aR < pb.

Thus, the lowest fraction of deviant P s sufficient to induce a transition is p∗ = aR
aR+b

. As

a result, the minimum number of P s deviating from the status quo to induce a switch from

contract U to contract E is given by the first equation in the right hand side of (2). Unlike

this resistance, the corresponding resistance for a R-induced transition from the U contract

to the E contract (the second equation in (2)) is determined by two factors: the minimum

number of rich agents that can induce a transition and the degree of intentionality of the rich’s

idiosyncratic behaviors. The critical number of the rich agents can be similarly computed

as before and the more intentional the deviant behaviors are, the higher the resistance (or

cost), and the more reluctant rich agents are to induce a transition from U . The terms in

equation (3) can be interpreted similarly (Section 4 derives these costs more rigorously).
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c(U,E) = min(

⌈
ηNR aR

aR + b

⌉
︸ ︷︷ ︸

poor

, ι

⌈
NR aP

aP + b

⌉
︸ ︷︷ ︸

rich

) (2)

c(E,U) = min(

⌈
NR b

b+ aP

⌉
︸ ︷︷ ︸

rich

, ι

⌈
ηNR b

b+ aR

⌉
︸ ︷︷ ︸

poor

) (3)

where dte is the lowest integer that is greater than or equal to t. Intuitively, the resistances (or

the costs) measure the size of the basin of attraction of each convention and the convention

with a larger resistance is harder to escape. Thus, the stochastically stable state is the

convention i in which c(i, j) > c(j, i), a convention which requires more non-best-response

play to escape (see Young (1998a) and more rigorous discussion in Section 4).

Equations (2) and (3) can be used to define a locus of ι and η such that both populations

are equally likely to induce a transition from U to E and E to U , respectively. That is,

Locus 1 (or Locus 2) in Figure 1 is the set of all ι and η equating the two minimands in

equation (2) (or equation (3)). We plot these loci in Figure 1, and designate the areas under

which U and E are stochastically stable.

The intuition behind Locus 1’s upward slope is that an increase in η makes the probability

of the poor inducing a transition from U to E less likely, because there will be a smaller

probability of enough idiosyncratic play to induce a transition, but an increase in ι makes

the rich also less likely to induce a transition from U to E, because the rich will be less

likely to deviate to the egalitarian convention that would hurt them were it to become an

equilibrium. The two parameters affect the different populations’ probability of inducing a

transition independently, and thus do not interact, hence Locus 1 is a straight line.

The intuition behind Locus 2’s downward slope is that an increase in η makes the likeli-

hood of the poor inducing a transition from E to U less likely, again because of the smaller

probabilty of sufficient idiosyncratic play to induce a transition. However in this case an

increase in ι makes the probability of the rich inducing a transition more likely, as higher

ι implies that the poor are innovating less and the rich are innovating more. In this case,

ι and η complement each other, as the larger poor population size magnifies the impact of
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Figure 1: Panel A1 and A2 show the case where E is risk dominant. Panel A1 shows the
combinations of ι and η under which each of the two populations is driving the transition.
The shaded area in panel A2 shows the combination of ι and η under which U is stochastically
stable. Panel B1 and B2 show the case where U is risk dominant, with Panel B1 showing
again the combinations of ι and η under which the idiosyncratic play of the rich or the poor
drive transitions. The shaded area in Panel B2 shows the combinations of ι and η where U
is stochastically stable.

intentionality in reducing the likelihood of a transition by the poor. Hence, if transitions

become more intentional, transitions driven by the rich from E to U become more likely,

and so a smaller η is required to increase the odds of a transition driven by the rich in order

to keep the probability of a transition driven by the two groups equal.

These loci and equations (2) and (3) show how transitions are induced by the idiosyn-

cratic play of the group for which the least number are required to induce the best responders

in the other group to switch strategies. If ι = 1 and η = 1, as in the standard evolutionary

models, resistances that drive transitions are identified by letting the degree of uninten-

tional idiosyncratic behavior become arbitrarily small, and in contract games this results

in idiosyncratic play of the losing population driving the transitions (Binmore et al., 2003).
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Inspection of (2) shows that for large NR we have c(U,E) ≈ aP
aP+b

, so that it is the resistance

of the poor that must be overcome by the idiosyncratic play of rich in order to transition

from the unequal contract to the equal contract (where the rich do worse). Similarly (3)

shows that c(E,U) ≈ b
aR+b

so that it is the resistance of the rich that must be overcome

by idiosyncratic play of the poor in order to transition from the pro-poor E contract to the

pro-rich U contract.

This counterintuitive feature of transitions in the standard model motivates allowing

for the varying degree of intentionality in idiosyncratic behaviors to account for historical

and empirical plausibility. First, when ι is sufficiently large with the population size still

being equal (η = 1), resistances are the least number of intentional idiosyncratic deviations

required to induce a transition by those who would benefit from the transition occur (see the

left panels in Figure 1). Thus as idiosyncratic behaviors become more intentional, transitions

are more likely induced by those who stand to benefit. In the extreme case where ι = ∞,

the transition from the unequal convention is always induced by the poor with resistance⌈
ηNR aR

aR+b

⌉
, while the transition from the equal convention is always induced by the rich with

resistance
⌈
NR b

b+aP

⌉
. In this case, when the poor are more numerous, more idiosyncratic

poor players are required to escape convention U , thus convention U is harder to escape and

is stochastically stable. The numerous poor are at a disadvantage in this case.

Second, when the size of the poor is large or the poor have low rates of idiosyncratic play,

the poor are less effective in transitions and all transitions are induced by the rich (observe

that the regions of (U → E : Rich) and (E → U : Rich) enlarge as η increases in the left

panels of Figure 1). That is, the larger a group, the less effective it is in triggering a transition

and the smaller the group, the more likely this group is able to generate transitions. Thus,

in the extreme case of η = ∞, all transitions are induced by the rich with the resistances

from conventions U and E being ι
⌈
NR aP

aP+b

⌉
and

⌈
NR b

b+aP

⌉
, respectively. If the rich’s

idiosyncratic behaviors are sufficiently intentional, the rich agents deviate from convention

U less frequently (with the probability ει) and thus it becomes more difficult to escape from

convention U , and U again becomes stochastically stable.

The proposition below formalizes this discussion and presents the sufficient and necessary

conditions for the stochastic stability of each convention in both the case where E is risk-
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dominant and where U is risk-dominant. We assume that NR is sufficiently large, ignoring

integer problems.

Proposition 1. There exist ι∗ > 1, η̄ > 1 and η∗ > 1.

(i) Suppose that E is risk-dominant. Then U is stochastically stable if and only if ι > ι∗ and

η > η∗.

(ii) Suppose that U is risk-dominant. Then E is stochastically stable if and only if ι < ι∗

and η > η̄.

Proof. The proof consists in checking whether equation (2) is greater than or less than (3)

under the two cases. We present the details in the Appendix.

In sum, the intentionality determines the direction of a group’s idiosyncratic play rate

while the relative group size determines its relative speed. Intentional idiosyncratic play of

R pushes towards U , and a large η means that those transitions are relatively quite rapid,

compared to transitions driven by the idiosyncratic play of P pushing toward E. When both

the degree of intentionality and the relative group size are sufficiently high, these two effects

jointly contribute to the long-run persistence of the unequal convention. Indeed Figure 1

shows that when ι and η are large, U is stochastically stable if

c(U,E) = min

{⌈
ηNR aR

aR + b

⌉
, ι

⌈
NR aP

aP + b

⌉}
>

⌈
NR b

b+ aP

⌉
= c(E,U) (4)

irrespective of risk dominance, so long as ι > ι∗ and η > η∗. This result is unlike the

literature, for example Young (1993b), who shows that only risk-dominant conventions are

stochastically stable in 2× 2 games.

Inequality (4) is at the heart of our model. Our extensions below will modify the inequal-

ity so that properties of the interaction structure, rather than NR, define the conditions under

which E or U is stochastically stable.

We can also investigate how the level of equality and efficiency of a contract, together

with the population structure, affects the persistence of the associated convention. To do

this, we parameterize the payoffs in the U contract with ρ and θ, which measure the joint

surplus and inequality under the unequal contract, respectively. More precisely, the unequal
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contract U gives joint surplus ρ := aP + aR , of which a share θ goes to the P s and the

remainder (1− θ) goes to the Rs, where 0 ≤ θ ≤ 1/2. We set b = 1 for simplicity: i.e.,

b

b+ aP
=

1

1 + θρ
,

b

b+ aR
=

1

1 + (1− θ)ρ

In this case risk-dominance of U is equivalent to ρ2(1− θ)θ > 1. Clearly contracts with

sufficiently high surplus ρ and low inequality (higher θ) will have higher risk-potential than

the E contract, and thus be stochastically stable in the traditional model. This relationship

between stochastic stability, risk-dominance, and efficiency-equity is behind Young’s contract

theorem discussed in the introduction.

It is simple to check that if η = 1 and ι = 1—that is, the classes are equally numerous

and idiosyncratic play is unintentional—the stochastically stable state (for all ι) is risk-

dominant. In the 2×2 contract game, this will be the contract that maximizes the product

of the payoffs of the two classes, namely ρ2(1 − θ)θ for convention U and 1 by assumption

for convention E. Thus, if ρ2(1 − θ)θ > 1 then c(U,E) > c(E,U), and U will be selected,

otherwise E is selected (and both are stochastically stable in the case of a tie). We can

also see that increased inequality in the division of the surplus will destabilize the unequal

contract. Greater inequality (lower θ since θ < 1
2
) in the unequal contract decreases both

resistances in (2) but it decreases c(E,U) less than it decreases c(U,E), lowering the relative

probability of a transition from E to U . But while inequality lowers the risk-dominance of

a contract, efficiency, as measured by a higher ρ, raises it. This is the sense in which the

stochastically stable equilibrium implements equal and efficient outcomes. But when ι and η

are sufficiently large, this equivalence between stochastic stability, risk-dominance, and equal

and efficient outcomes is broken: stochastically stable contracts can be risk-dominated, and

thus inefficient as well as inegalitarian.

Ignoring integer considerations and setting c(U,E) = c(E,U) from (2) and (3) allows us

to determine the levels of efficiency and inequality of alternative contracts (or, equivalently,

the risk-potential) such that the population would spend approximately half of the time at

the unequal and half the time at the equal contract. In order to look at this simple case,

define η∗,∞ to be the critical fraction η equating the two resistances, c(U,E) = c(E,U), when
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ι =∞ and therefore satisfying

η∗,∞(ρ, θ) =
1 + (1− θ)ρ

(1− θ)θρ2 + (1− θ)ρ
. (5)

This expression yields informative comparative statics: If ρ < 2, so that the unequal

convention is less efficient than the equal convention, then η∗,∞(ρ, θ) > 1 and the unequal

convention is risk-dominated (since (1−θ)θρ2 < 1). We also have dη∗,∞

dρ
< 0. Thus, inefficient

conventions that are also unequal and thus risk-dominated (i.e. those with θ < 1
2

and

sufficiently low ρ) require strictly larger populations of poor agents to be stochastically

stable with intentional dynamics.

The reason is not the free-rider logic inspired by Olson (1965); nor is it related to the

fact that increased supply of a factor of production may disadvantage its owners in markets.

Rather, the advantage of small size arises simply because smaller groups are more likely to

experience realizations of collective action (that is, simultaneous deviations from the status

quo contract) large enough to induce a transition.

3 Interactions in Bipartite Networks

In this section, we show that our main result, that intentional idiosyncratic play together

with a relatively larger poor population stabilizes inefficient and unequal (risk-dominated)

conventions, holds under more general assumptions on interaction structure.

The random matching model is a useful benchmark, which clearly illuminates the main

mechanism for the persistence of the unequal convention, but it assumes that every agent

in one population is matched with all agents in the other population and vice versa. But

interactions between agents in the situations we are modelling are inherently local because

agents are separated by spatial, institutional, and cultural distances. In addition, the as-

sumption of interactions with all agents in the population implies that the expected waiting

time for a transition is enormous when the size of the total population is large (Ellison,

1993). This is because when an agent responds to the whole population distribution, the

threshold number of deviant agents necessary to induce transitions is of the same order as

population size and the expected waiting time increases exponentially in population size.
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For these reasons, in our model of two classes, it is natural to consider a bipartite network

in which each population occupies one of two sets of vertices of a graph and agents in one

group have a limited number of interactions with agents in the other group.

3.1 Simple bipartite networks

We begin with the simplest possible bipartite network, which is analogous to a circle model

as in Ellison (1993) (see Figure 2). We call this bipartite network a 1-d bipartite network.

Recall that a graph Λ consists of a set of vertices and a set of edges. A graph Λ is bipartite

if its vertex set can be partitioned into two sets, ΛP and ΛR, such that every edge of Λ

is incident to one vertex in ΛP and one vertex in ΛR. Suppose that the poor agents and

the rich agents are located in ΛP and ΛR, respectively. To accommodate the asymmetry in

the sizes of two populations, we suppose that a rich agent interacts with a subset of poor

agents—named the “village” of poor agents (see the dotted circles in Figure 2). The rich

agents and the poor villages, each of which consists of η poor agents, together form the

vertices of ΛR and ΛP , respectively. Here, we assume that every poor village has the same

number of poor agents, and hold the rate of non-best response play constant across rich and

poor, but our results still hold for the case where poor villages consist of different numbers of

poor agents with slight modification. We write σ1(x), σ2(x) · · · , ση(x) ∈ {U,E} =: S as the

strategies of the individual poor agents within the village x ∈ ΛP and σ(y) be the strategy

of a rich agent y ∈ ΛR. We also write

σ(x) = (σ1(x), σ2(x), · · · , ση(x)) for all x ∈ ΛP and σ = ({σ(x)}x∈ΛP , {σ(y)}y∈ΛR)

and call σ a population state. Let Ξ be the set of all possible population states.

We denote by Nx ⊂ ΛR the neighbors of the poor village at x ∈ ΛP and by Ny ⊂ ΛP

the neighbors of the rich agent at y ∈ ΛR. Note that in bipartite networks, Nx (for x ∈ ΛP )

consists of rich agents, while Ny (for y ∈ ΛR) consists of poor villages. Also if x is a neighbor

of y, then y is also a neighbor of x; i.e., x ∈ Ny ⇐⇒ y ∈ Nx. The payoffs to a poor agent at

village x demanding contract i at state σ, uP (x, i, σ), and to a rich agent at site y demanding

contract j at state σ, uR(y, j, σ), are given by:
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Rich agents

Poor villages

RL

PL

Figure 2: A Simple Bipartite Network. In this bipartite network, the black squares
represent rich agents and the dotted circles represent poor villages, in each of which two
(= η) poor agents are located. We connect the first poor village to the last rich agent, which
is equivalent to imposing a periodic boundary condition. Each rich agent has interactions
with two poor villages, each of which is itself interacting with one other rich agent. Similarly
each poor village has interactions with two rich agents, each of which is interacting with one
other poor village.

uP (x, i, σ) :=
∑
y∈Nx

πP (i, σ(y)), anduR(y, j, σ) :=
∑
x∈Ny

η∑
η̃=1

πR(ση̃(x), j). (6)

Similarly to the random matching model, we write βx(σ) and βy(σ) for the best responses

for the poor agents at village x and the rich agent at site y:

βx(σ) := arg max
i∈{U,E}

uP (x, i, σ) and βy(σ) := arg max
j∈{U,E}

uR(y, j, σ)

where again we assume that the best responses are uniquely determined. Note that all poor

agents in the same village have the same neighboring rich agent and hence the same payoffs,

implying that their best responses are the same.

Evolutionary dynamics under local interactions, similarly to those under random match-

ing, are defined as follows. At each period, either a poor agent or rich agent can randomly

change their contract strategy according to the following probabilities:

P agent chooses

βx(σ) with probability 1− ε− ει
U with probability ει

E with probability ε
R agent chooses

βy(σ) with probability 1− ε− ει
U with probability ε
E with probability ει

(7)
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To describe transitions between states, we denote by σx,η̃,i the state induced from a state σ

by the switching of the η̃-th poor agent at village x ∈ ΛP to strategy i. Similarly, we denote

by σy,i the state induced from a state σ by the switching of the rich agent at site y ∈ ΛR to

strategy i. Then equation (7) defines transition probabilities {P ε(σ, σ′)}σ′=σx,η̃,i,σy,i , which

fully specifies the stochastic convention evolution. Again, the chain defined by (7) admits a

unique invariant measure, which enables us to study stochastic stability.

Lemma 1. The Markov chain defined by (7) has a unique invariant measure for all ι,

including ι =∞.

Proof. See Appendix A.2.

As in the uniform interaction case, the rarity of a transition between two states is mea-

sured by the resistance (which we also call cost) of a transition, defined by c(σ, σ′) :=

limε→0
lnP ε(σ,σ′)

ln ε
and this is given in our model as follows:

c(σ, σ′) =


0 if σ′ = σx,η̃,βx(σ)

ι if σ′ = σx,η̃,U , βx(σ) = E

1 if σ′ = σx,η̃,E, βx(σ) = U

c(σ, σ′) =


0 if σ′ = σy,βy(σ)

1 if σ′ = σy,U , βy(σ) = E

ι if σ′ = σy,E, βy(σ) = U

(8)

Observe that the model under random matching is simply a model on a complete bipartite

network—a bipartite network in which all agents in one group are connected to all the agents

in the other group and vice versa.

To study the problem of stochastic stability, as is explained intuitively in Section 3, we

first need to identify the absorbing states for the unperturbed process—i.e., the process with

ε → 0. These absorbing states are called stable states because every agent plays their best

response at these states. To proceed, we denote by E a generic stable state, with EU the U -

convention (where all agents play U), and by EE the E-convention (where all agents play E).

We call a finite sequence of states γ = (σ1, σ2, · · · , σT ) a path if σt+1 is obtained from σt by

a single agent’s switching from one strategy to another. The cost for a path, c(γ), is defined

to be the sum of all costs of transitions associated with the path: i.e., c(γ) :=
∑

t c(σt, σt+1)

and the cost between absorbing states, C(E1, E2), is defined to be

C(E1, E2) := min{c(γ) : γ is a path from E1 to E2} (9)
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How does the unequal convention persist in the network interaction model? There are

two distinctive features of the network interactions from the random matching model. The

first concerns the stable states. In the global interaction model, the only two stable generic

states correspond to the two pure Nash equilibria. In the network variant of the model, since

interactions are local and limited to neighbors, there are many possible stable states. This is

true even in the case of the simple bipartite network in Figure 2, restricted to only 10 nodes,

with 5 nodes of each class, with each poor node being a village containing 2 poor agents.

For example, the state given by:

E1 = ( E︸︷︷︸
rich

, E︸︷︷︸
poor

, U︸︷︷︸
rich

, U︸︷︷︸
poor

, U︸︷︷︸
rich

, E, E,E,E,E) (10)

is stable. The first entry in E1 shows the strategy of first rich agent, the second entry

the strategy played by all agents in the first poor village, etc. This state thus exhibits two

contiguous blocks of different strategies, one block playing U and one block playing E, which

is preserved under best response. The stability of the state, E1, can easily be checked. The

poor agents in the the second (or sixth) site best respond with E because b > aP and half

of their neighbors are playing E. Also, the poor agents in the village at the fourth site

best respond with U because aP > 0 and both of their neighbors are playing U . The rich

agents at the third or fifth site also best respond with U because aR > b. Thus there is the

possibility of global heterogeneity despite local uniformity, as in Young and Burke (2001)

and our serfdom and desegregation examples below.

Recall that in comparing the basin of attraction of conventions U and E under random

matching, we rely on the resistances (or the cost of transitions) from convention U directly to

E and vice versa (in equation (4)), since there are only two stable states. By contrast, in the

network model when we consider the minimum number of idiosyncratic players which can

upset each convention, these numbers are determined by transitions to intermediate stable

states, E ′, as the above example shows. That is, for the simple bipartite network model we

will show that

min
E ′

C(EU , E ′) ≥ min(ι

⌈
2

aP
b+ aP

⌉
,

⌈
2η

aR
b+ aR

⌉
) >

⌈
2

b

b+ aP

⌉
≥ min

E ′
C(EE, E ′) (11)
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for large ι and η. The left-hand side is the lowest cost transition out of EU to any intermediate

stable state E ′, while the far right-hand side is the lowest cost transition out of EE to any

intermediate stable state. Equation (11) can be regarded as a generalization of equation (4)

to the local interaction model with NR in equation (4) being replaced by 2—the number of

neighboring vertices of poor agents in the simple bipartite local interaction network.

The second factor is the propagation of conventions via overlapping neighborhoods. Each

neighborhood overlaps with others and the transition from one convention to another occurs

due to the propagation of a strategy through clusters of neighbors —hence through the

intermediate stable states, states in which some agents demand U while others demand E

(e.g., see Ellison (1993, 2000)). To give an example of a fast propagation mechanism in our

simple bipartite model, consider the following stable states, E1 as in (10) (presented below

again) and E2 such that:

E1 = ( E︸︷︷︸
rich

, E︸︷︷︸
poor

, U︸︷︷︸
rich

, U︸︷︷︸
poor

, U︸︷︷︸
rich

, E, E,E,E,E) E2 = (E,E, U, U, U, U, U,E,E,E) (12)

where again there are ten sites in total and each site alternates between the rich agent and

poor village sites. It is also easy to see that from E1, one idiosyncratic play by the rich

agent at the seventh site induces the poor village at the sixth to best respond with U , the

population state becomes stabilized at E2. Thus if deviant play causes a transition from

convention E to state E1, we will have the following propagation mechanism of contract U :

EE → E1 → E2 → ... (13)

where C(E1, E2) = 1, C(E2, E3) = 1, and so on. In the next section, we show that general

versions of (11) and a condition guaranteeing that C(E ′, E ′′) = 1 for all transitions between

E ′ and E ′′ on the path between the E and U conventions are together sufficient for the

stochastic stability of the unequal convention in the simple bipartite network. This yields

the following proposition as a result:

Proposition 2. Consider the local interaction model in the bipartite network given in Figure

2. Then there exist ι∗ and η∗ such that for all ι > ι∗ and η > η∗, EU is stochastically stable.
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Proof. According to Definition 2 below, the 1-d bipartite network in Figure 2 is P-fragile (1,

1/2), and the result follows from Theorem 2 below.

This local interaction model, as in Young and Burke (2001), can generate transition

paths marked by heterogeneity in conventions. Applied to the two population case, it can

represent the phenomenon noted by Oberdorfer (1963) during the civil rights movement

(discussed further below), where, within the same city, lunch counters would be desegregated

while hotels remained segregated, as well as the piecemeal transition to desegregation across

cities prior to 1964. Similarly, the diversity of tenancy relationships across England after

the Black Death shows heterogeneity consistent with the networked version of the model,

where manorial obligations disappeared in some parts of England very quickly while others

took much longer. However, the network structure in this version of the model is highly

stylized, and looks little like real world social networks. Generalizing the results from the

local interaction model to arbitrary bipartite graphs is what we turn to in the next section.

3.2 General Bipartite Networks

We now prove our most general result about the stochastic stability of the U convention. We

show that a similar characterization and intuition hold for a broad range of bipartite networks

satisfying a condition we call P-fragility. Loosely, P-fragility guarantees that enough of the

P population will respond to the idiosyncratic play of a small cluster of R players, so that

the rest of the R population has to best-respond by switching strategies as well. P-fragility

rules out networks that are robust to idiosyncratic play of the rich, no matter how intentional

and how frequent.

Recall that a bipartite graph (ΛR,ΛP , E) is a graph in which a set of vertices Λ := ΛR∪ΛP

is partitioned into two sets, ΛR,ΛP such that every edge in edge set E is incident to one

vertex in ΛP and another vertex in ΛR. Recall also that a path in a graph is a sequence of

distinct vertices in the edge set. We say that a graph Λ is connected if every pair of vertices

can be joined by a path and we consider only connected bipartite networks. If we have

disconnected networks, the analysis can be done separately for each connected component.

Recall that Nz is the neighbors of site z and similarly we let N(S) be the neighbors of set
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S: i.e., N(S) = ∪z∈SNz. We will also write (SP )c := ΛP\SP and (SR)c := ΛR\SR.

To study general interaction structures for two-population games, we extend the concept

of cohesiveness, proposed by Morris (2000), to bipartite networks. Cohesiveness captures

how many interactions two sets of players, each from a different population, share with each

other.

Definition 1 (q-cohesiveness). We say that SP ⊂ ΛP is q-cohesive with TR ⊂ ΛR if

min
z∈TR

|Nz ∩ SP |
|Nz|

≥ q.

In words, a set of poor villages SP in a population is q-cohesive with another set TR from the

rich population if every rich agent has at least q proportion of its interaction with SP . Note

that it is not symmetric: TR can have many of its members interact with SP while members

of SP interact with many members of TR as well as many agents outside of TR.

We can use q-cohesion to obtain a simple sufficient condition for stability of the U . We

simply require that i) every poor village set is sufficiently cohesive with its neighboring rich

so that a stable cluster (described in (10)) can emerge and an expanded cluster can stabilize

and ii) every set of poor villages neighboring rich agents are sufficiently cohesive with the

other poor villages, so that the stable cluster can propagate throughout the network.

Definition 2. We say that a bipartite graph is (qP , qR)-cohesive if

(i) Every SP is qR-cohesive with N(SP ).

(ii) Every SR is qP -cohesive with N(SR).

We can then show the following theorem:

Theorem 1. Suppose that the bipartite graph is ( b
b+aP

, b
b+aR

)-cohesive. Then there exists ι∗

and η∗ such that for all ι > ι∗ and η > η∗, EU is stochastically stable.

Proof. This follows from Theorem 2 below.

While (qP , qR)-cohesiveness is intuitively appealing, it is too strong, and does not admit

many of the cases we have already studied above. First, for the complete network (|ΛP | =

|ΛR| = N) which yields the random matching model in Section 2.3, every singleton {x} is
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Figure 3: Illustration of Definitions 1, 3, and 2. We call the bipartite network in Panel
B a 2-d network. Squares indicate Rich agents, circles indicate clusters of size η Poor agents.
Colored indicates U strategy played.

1
N

-cohesive with Nx (qR = 1
N

in Definition 2 (i)). Thus when N is large for the complete

network, the condition in Theorem 1 is difficult to be satisfied. Second, for the 1-d network

in Figure 2, every {x} is 1
2
-cohesive with Nx ( qP = 1

2
in Definition 2 (ii) ). Since the poor

prefer E to U , b
b+aP

> 1
2

and thus a sparse network like the 1-d network fails to satisfy the

condition in Theorem (1). Thus, we introduce a slightly weaker condition than cohesiveness

which also induces a fast propagation mechanism described in (12).

Definition 3 (Bipartite weak-cohesive). We say that a SR ⊂ ΛR is q-weak-cohesive with

TP ⊂ ΛP if

max
z∈TP

|Nz ∩ SR|+ 1

|Nz|
≥ q. (14)

If TP = ∅, we set q = 1. Obviously, if SR is q-cohesive with TP , then SR is q-weak-cohesive

with TP . In words, SR is q-weak-cohesive with TP if there exists a poor village (z) in the

poor village set, TP , whose has at least q − 1
|Nz | proportion of interactions with SR. Thus,

when all rich agents in SR play strategy, say, U , there exists a poor village z which has at

lease q|Nz| − 1 of rich neighbors playing strategy U . If one rich agent in the neighborhood

of z (outside of SR) switches from E to U and if q is greater than the threshold fraction,

derived from payoffs, inducing U to be the best responses of the poor agent at z, U indeed
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Figure 4: Illustration of Definition 2. From the E-convention EE in Panel A, three rich
agents, y1, y2, y3, idiosyncratically play U , leading to Panel B. Then, {x} being 1

3
-cohesive

with Nx ensures that the state of the cluster playing U agents becomes stable in Panel C.
Then the rich agent at y′ idiosyncratically plays U in Panel D, and Nx being 3

4
-weak-cohesive

with {x1}c ensures that the poor village at x′ will best respond with U , leading to Panel E.

becomes the best response of the poor agent at z. This process guarantees the propagation

mechanism. Note that since we are interested in the fast propagation and convergence,

Definition 3 relies on the propagation mechanism induced by a single agent (hence 1 in the

numerator of (14)). However, Definition 3 can be relaxed to study other (possibly slower)

propagation mechanisms by more than one agents, by changing the number 1 to 2 or 3 etc.

accordingly. We provide some examples of Definition 3 in Figure 3.

In Figure 4, we explain, in details, how to determine the cost of transitioning between

conventions using cohesion and weak-cohesion. Suppose that the initial convention is EE
(Panel A), and that three rich agents playing U in the neighborhood of a poor village ensures

that the poor village’s best response is U . Now suppose that the three rich agents at y1, y2,
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and y3 play U idiosyncratically at the same time. Then whether the resulting state induced

by the deviant plays of the rich agents is stable depends on the number of neighbors of those

deviant rich agents (see Panel C in Figure 4). In this example, a minimal stable set consists

of one poor village and its neighbors, ({x}, Nx). If {x} is qR-cohesive with Nx, it means

that the rich agents in the neighborhood of the poor village x have at least qR proportion of

interactions with the poor village. Thus if aRqR ≥ b(1 − qR) (or qR ≥ b
aR+b

) holds, playing

U is the best response for the remaining rich agents in Nx. Thus all agents in ({x}, Nx)

playing U constitutes a stable, autonomous, cluster of agents playing U (see Panel C). In

the 1-d network in Figure 2 (or the 2-d network in Figure 4), if {x} is qR-cohesive with Nx,

then every poor set S ′P containing {x} is again qR-cohesive with N(S ′P ). Definition 4 below

requires the existence of a set SP such that every S ′P containing SP is again qR-cohesive with

N(S ′P ), which ensures that (S ′P , N(S ′P )) can be a stable cluster.

Next, consider an idiosyncratic play of U by a rich agent neighboring this cluster of U

agents (see y′ in Panel D in Figure 4). If Nx is qP -weak-cohesive with {x}c = ΛP\{x}, there

exists x′ 6= x ∈ ΛP such that the poor village at x′ neighboring the cluster faces at least

qP |Nx′| − 1 number of the rich agents playing U . If aP qP ≥ b(1− qP ) (or qP ≥ b
aP+b

) and a

single idiosyncratic strategy of U is played by a rich agent in Nx′ (that is, y′ in Panel D), then

playing U is the best response for the poor agent. Thus, this condition, together with the

condition for cohesivness, ensures a transition to a new stable state with a greater number

of agents playing U . In Definition 4, we requires that every N(SP ) is qP -weak cohesive with

(SP )c, where we recall that (SP )c := ΛP\SP .

Definition 4. We say that a bipartite graph is P-fragile (qP , qR) if

(i) For some SP , every S ′P containing SP is qR-cohesive with N(S ′P ).

(ii) Every N(SP ) is qP -weak-cohesive with (SP )c.

The definition of P-fragile is somewhat more complicated than Definition 2, however the

following two lemmas give sufficient conditions for P-fragililty that are readily applicable to

various network structures.

Lemma 2 (Sparse networks). Let D be the maximum degree of the poor village and every

set neighboring a poor village set is qP -weak cohesive with the complement of the poor village.
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Then the bipartite graph Λ is P-fragile (qP ,
1
D

).

Proof. We first check Definition 4 (i). Let SP ⊂ ΛP and z ∈ N(SP ). Then for some x ∈ SP ,

z ∈ Nx. Thus x ∈ Nz and |Nz ∩ SP | ≥ 1. Then for any z ∈ N(SP ), we have

|Nz ∩ SP |
|Nz|

≥ 1

|Nz|
≥ 1

D
.

Thus every SP is 1
D

-cohesive with N(SP ) which implies Definition 4 (i). Also by the assump-

tion, any N(SP ) is qP -weak cohesive with (SP )c.

Note that for the 1-d bipartite network in Figure 2, every rich agents set neighboring S faces

a poor village site (x) outside S which has one interaction with the rich agent set (out of

total 2 interactions). Thus
|Nx ∩N(SP )|+ 1

|Nx|
=

1 + 1

2

and N(SP ) is 1-weak-cohesive with (SP )c and thus the 1-d bipartite graph is P-fragile(1, 1
2
).

Similarly, for the 2-d bipartite network in Panel B in Figure 3, every rich agents set neigh-

boring S faces a poor village site (x) outside S which has 2 interactions with the rich agent

set (out of total 4 interactions).Thus

|Nx ∩N(SP )|+ 1

|Nx|
=

2 + 1

4

which shows that the 2-d bipartite network is P-fragile (3
4
, 1

4
). Thus Lemma 2 includes

the 1-d bipartite network in Figure 2 and 2-d bipartite network in Panel B in Figure 3 as

special cases. In addition, Lemma 3 covers the complete network (hence random matching

interactions in Section 2.3).

Lemma 3 (Dense networks). Suppose that there are |ΛP | = |ΛR| = N and each pair of sites

in a population shares at least N −k neighbors for some 0 ≤ k < N (i.e., |Nx∩Nx′| ≥ N −k

for all x, x′ ∈ ΛP and |Ny ∩Ny′| ≥ N − k for all y, y′ ∈ ΛR). Then the bipartite graph, Λ, is

P-fragile (N−k
N
, N−k

N
).
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Proof. Choose SP = ΛP in Definition 4 (i). Then for all y ∈ N(SP ) = ΛR,

|Ny ∩ SP |
|Ny|

=
|Ny ∩ ΛP |
|Ny|

≥ N − k
N

and hence ΛP is N−k
N

-cohesive with N(ΛP ). Thus, Definition 4 (ii) is satisfied. Also let

N(SP ) such that SP 6= ΛP be given. Choose z 6∈ SP . Then again by the assumption,

|Nz ∩N(SP )|+ 1

|Nz|
≥ N − k + 1

N
≥ N − k

N

Thus every N(SP ) is N−k
N

weak-cohesive with SP .

The condition for P-fragility combines the two aforementioned distinctive features of

network structure, which make the P population vulnerable to idiosyncratic play by the

R population. Following Young (2011), who uses very similar conditions to characterize

diffusion of efficient social innovations in a symmetric coordination game, we can call the

first condition Autonomy : essentially every set of P players is in a neighborhood of sufficiently

many R players such that a small amount of idiosyncratic play of the R players can generate

a local stable cluster of U play. The rich share enough interactions with the poor that they

best respond with U to the poor, who are induced to best-respond with U to idiosyncratic

play of U by a small subset of rich. The second condition can be called Contagion: each

P player is in a neighborhood of R players that share neighbors with sufficiently many

other R players. Thus our theorem is in the spirit of Young (2011), but adapted to the

asymmetric bipartite networks with intentionality, where it yields a sufficient condition for

even inefficient conventions to be stochastically stable in the long-run.

Theorem 2. Suppose that the bipartite graph is P-fragile ( b
b+aP

, b
b+aR

). Then there exists ι∗

and η∗ such that for all ι > ι∗ and η > η∗, EU is stochastically stable.

Proof. See Appendix A and the precise expressions for ι∗ and η∗.

Theorem 2 identifies sufficient conditions for EU to be stochastically stable. This is be-

cause in a networked model, there are many intermediate stable states between conventions,

unlike in the uniform interaction case. Thus we are only able to bound the transition times
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between the two conventions, preventing us from obtaining a sharper characterization. We

also prove a partial converse of Theorem 2 in Proposition 5 in Appendix A.1, which provides

similar sufficient conditions for convention EE to be stochastically stable. As with P-fragility

guaranteeing vulnerability of the poor to the idiosyncratic play of the rich, so that convention

U is easily accessible, this R−fragility condition guarantees that the network is sufficiently

vulnerable to idiosyncratic play of the poor so that E is easily accessible.

The proof of Theorem 2 is presented in Appendix A. In the proof, we first show that

(i) the cohesive sets give the upper bound of the cost of transition from EE (Lemma 4) and

(ii) the weak-cohesive sets, together with cohesive sets, ensure that the cost of a transition

from each intermediate stable state (EM) is always 1 (Lemma 5). Then we show that (iii) a

condition similar to (11) is sufficient for the stochastic stability of the U -convention EU .

4 Information Structure and Equilibrium Selection

Because it is sampling noise that drives institutional transitions, classes whose play is not

completely observed by members of the other class have an advantage similar to that con-

ferred by larger or smaller η. In this section we show that our model can be re-interpreted

so that even if the interactions are uniform and population sizes are identical (η = 1), we

can consider each class observing only a sample of the other class (see Figure 5). Then

players best-respond not to the average play of the whole opposing population, but rather a

subsample. Then, if the sample sizes differ between the two classes, the class with a larger

sample will have an advantage, even if the class sizes are identical. Correspondingly, having

information on what only a small share of the other class is doing will heighten the respon-

siveness to small amounts of idiosyncratic play, increasing the likelihood of a transition to a

disfavored convention when play is intentional.

Allowing populations to respond to only a sample of their neighbor’s play breaks the

symmetry implicit in the model interaction structure above. If agent P plays a best-response

to a neighborhood containing agent R, then in our model thus far this implies that agent

P is also in the neighborhood whose play agent R best responds to. Our model thus far

also implies that populations can automatically infer the state of play from the payoff they
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received. But if population P agents only sample a number κP of their neighbor’s play,

and population R agents only sample a number κR of their neighbors play, then the payoff-

relevant population is no longer identical to the behavior-relevant population.

Group Size Model Different Interaction Networks

v v v v

v v v

Rich

Poor

v

Figure 5: An analogy between the group size model and an asymmetric structure
model. The image on the left shows the 1− d interaction structure with η = 2. The image
on the right shows an equivalent information structure with η = 1 and κ = κR

κP
= 2, where

the arrows are directed from players who are sampling to the players whose behavior is being
sampled.

The stability of unequal gender norms provides an illustration. Male-female interactions

may be differentially structured in traditional patriarchies, despite numerical parity and

similar interaction structures. However, men who can publicly circulate and fraternize with

other men have an informational advantage vis-a-vis women confined to domestic roles and

family networks. This may have a similar effect as men being less numerous in a random

matching model of the kind in the last section. By indirectly observing the behavior of

many women, male strategies will not be altered in response to idiosyncratic play of a few

women, while women may be induced to abandon a favored convention by the idiosyncratic

play of just a few men. This may explain the well-documented persistence of unequal gender

norms, such as women working outside the home (Alesina et al., 2011), patrilocality, and

son-preference (Jayachandran, 2015).

Beyond gender, we also have in mind rural societies. Pre-capitalist agrarian institutions

(Gellner, 1983) entailed very different information sets between classes. Elite upper classes

communicated readily amongst themselves and therefore had information about the recent

play of a large segment of the less well-off class. The geographical, cultural and linguistic

isolation of the P s, by contrast, militated against information sharing beyond ones’ local
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community.

The advantage enjoyed by the Rs is not that a given R-patron may engage the P -clients

of other Rs. Rather, by drawing information from a larger sample of P s, the R’s less noisy

signal of the distribution of play reduces the likelihood that their myopic best response will

overreact to the chance occurrence of a high level of idiosyncratic play among their particular

P -clients.

v vv vvv

Figure 6: Asymmetric Network: an autonomous state and propagation. Note that
d2 b

b+aP
e = 2 and we assume that κ = κR

κP
= 4

2
= 2 and d2κ b

b+aR
e = 2. The sites in black

constitute the stable cluster of poor and rich agents, hence an autonomous state. The sites
in grey yields the propagation.

This idea can be readily captured in a re-interpreted version of our model. Fix η = 1

and consider again the 1-d bipartite network in Section 3. To simplify analysis, suppose that

ι = ∞, but the analysis to follow can be readily extended to arbitrary ι. Now we suppose

that each poor site is occupied by one poor agent and each poor observes the behavior of

κP rich agents while each rich agents observes the behavior of κR poor agents. Further let

κ = κR
κP

be a parameter capturing the relative scope of vision of the rich agents. In Figure

7, A rich agent observes 2κ poor neighbors, while a poor agent observes the behavior of

2 rich neighbors. To explain how convention U becomes stochastically stable, we consider

an escape from convention U first. Observe that at convention U , only the poor agents

idiosyncratically play contract E. Thus the minimum cost of escaping convention U can be

similarly computed as in (11) and is given by

min
E ′

C(EU , E ′) ≥
⌈

2κ
aR

aR + b

⌉
(15)

That is, to induce a rich agent to best respond with E, at least aR
aR+b

proportion of the 2κ

poor agents neighboring the rich agent need to idiosyncratically play strategy E.

Next we consider an escape from convention E. Also recall that, when ι =∞, at conven-
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tion E only rich agents idiosyncratically play. Thus, the minimum number of idiosyncratic

plays by the rich agents to escape from convention U needs to ensure that the number of poor

agents best-responding to the rich agents’ idiosyncratic plays again is enough to support the

idiosyncratic play U of the rich agents as their best responses. Note that d2 b
b+ap
e = 2 rich

agents in the neighborhood of a poor agent ensures U to be the best response of the poor

agent and that d2κ b
b+aR
e poor agents in the neighborhood of a rich agent ensures U to be the

best response of the rich agent. Thus, the minimum number of the rich agents’ idiosyncratic

play must be at least d2κ b
b+aR
e + 1 (see Figure 6 where d2 b

b+aP
e = 2 and d2κ b

b+aR
e = 2).

Thus, we find that

min
E ′

C(EE, E ′) ≤
⌈

2κ
b

aR + b

⌉
+ 1

Finally, from the stable cluster consisting of U playing
⌈
2κ b

aR+b

⌉
+ 1 rich agents and U

playing
⌈
2κ b

aR+b

⌉
poor agents, if one neighboring (E-playing) rich agent plays U -strategy

idiosyncratically, then the dynamics move to the new stable cluster with a new U playing

rich agent and a new U playing poor agent (see sites in grey in Figure 6). Thus similarly to

Theorem 2, we obtain the following result:

Proposition 3. Suppose that ι = ∞ and consider the network in Figure 6, where κ ≥ 2.

Then, we have

min
E ′

C(EU , E ′) ≥
⌈

2κ
aR

aR + b

⌉
and min

E ′
C(EE, E ′) ≤

⌈
2κ

b

aR + b

⌉
+ 1 (16)

and there exists κ∗ such that for all κ ≥ κ∗, U is a stochastically stable state.

Proof. See Appendix C.

Changing gender norms as a result of female labor force participation may result from the

increased availability of information about male behavior (lower κ or higher κFemale relative to

κMale), as women could increasingly share information about their husbands when working

outside the household. In the pre-industrial context, Gellner argues that the geographic,

industrial, and occupational mobility characteristic of modern labor markets (coupled with

the spread of literacy and greater ease of communication) made workers less responsive to

the demands of local patrons, as they had access to information about conditions elsewhere
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via shared national culture. In our U.S. South example below, ongoing mechanization of

the agricultural economy, lowered transportation costs, the spread of black newspapers, and

increased urbanization may have played a similar role, allowing poor blacks to see a much

larger swath of white behavior, and therefore no longer reacting purely to the idiosyncratic

behavior of the local whites. This is independent of any increased market competition:

rather it comes through the availability of information about the norms prevalent in other

places, measured as an increase in κ.

A similar informational role might be played by leaders or prominent activists, as in

Acemoglu and Jackson (2014), who model leaders as agents whose play is visible to all future

agents. In our context, leaders could be modelled as agents whose behavior is always sampled

by the other players. The idiosyncratic play of only a few leaders in one population could

induce best-responses by the all players in the other population. We leave this extension to

future work.

5 Historical “Bottom up” Transitions Among Conven-

tions

We now go through a number of well-known historical examples of changes in conventions,

motivating our modifications of the standard evolutionary model and contrasting them with

the conventional top down approaches. They have in common the following: First, a transi-

tion was induced by challenges to a long standing unequal status quo convention by at best

loosely coordinated members of the disadvantaged group. Second, these challenges altered

the best response of the advantaged group, allowing for the decentralized stabilization of

an alternative convention. Any legislation or other formal recognition and enforcement of

the new convention came only after the de facto decentralized change had occured. Third,

transitions followed structural transformations, either in population size (changes in η) or,

qualitatively, changes in interaction structure away from P-fragile networks.
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5.1 The Demise of Serfdom In England

Consistent with the centralized top down approach, the emancipation of Russia’s serfs by

Tsar Alexander II in 1863 was a deliberate choice to implement a new set of institutions

resulting from bargaining within Russia’s elite (Blum, 1971). In contrast, the demise of

English serfdom was not the result of explicit bargaining among political parties implemented

by a central authority.5 Serfdom was never formally repealed by law England, and indeed

all legal labor restrictions were arguably not abolished until the 1875 repeal of Master and

Servant criminal fines (Naidu and Yuchtman (2013)). But agricultural serfdom had, in

practice, disappeared centuries earlier.

The practice of serfdom in England centered on customary villeinage, whereby serfs

(villeins) were generally tied to lords on inherited customary contracts, and had labor obli-

gations (e.g. tallage, the land tax) as well as tax obligations like merchet (dues for marriage

of a daughter), heriot (death taxes), childwite (fine for illegitimate pregnancy) and chevage

(head taxes paid to the lord). Beyond the economic claims, serfdom came with a distinct

inequality in status, with the chevage being “psychologically burdensome,signifying,...the

yoke of servitude.” (Bailey, 2014, pp. 46). As with sharecropping practices or norms of

racial segregation in the U.S. the transition looked like “a bewildering variety of practices

... a mosaic of variable bargains” even within the same locality of upon the same seignioral

estate.” (Bailey, 2014, pp. 23).

Between 1350 and 1450 this entire system disappeared after centuries of peristence, re-

placed by shorter leases (either copyhold or leasehold) where rents were fixed in cash, status

was no longer inherited, and no feudal dues were collected. The most immediate candi-

date explanation during this period is undoubtedly the 1349 Black Death, which lowered

population by up to 50% in some areas.

North and Thomas (1971) provide the economic interpretation of the change. Essentially

5Other countries are less clear-cut, but an arguably similar process was at play in France. Protracted
agrarian conflict culminated in the 1789 peasant rebellions, forcing local lords to abandon many of their feudal
privileges well before any legislation was passed:“Peasant uprisings kept rural France on the legislative agenda
and drowned out the tendencies to silence on seigneurial rights that characterized much of the nobility”
(Markoff, 1996, pp. 509). The abolition of seigniorial dues by the Estates General in 1789 confirmed the
new order, it did not introduce it. Instead, a series of uncoordinated actions by dispersed peasants, each
taking the grievances of the entire group as their own, induced the aristocratic class to change the terms of
agricultural labor.
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the fall in the labor-land ratio increased the value of labor and competition among manors

for scarce villeins induced a change in customs. North and Thomas describe a process very

consistent with our model, but our model makes the interpretation of the Black Death shock

more nuanced. The Black Death changed population shares such that idiosyncratic play

by the serfs could rapidly induce a best-response from the lords, as well as changing the

relative payoffs from different institutional arrangements. Indeed, the timing of the decline

of serfdom occurs a full generation after the Black Death, largely during a period of falling

real wages, and with considerable local variation (Bailey, 2014). North and Thomas (1971)

point out that were it simple changes in scarcity alone, it would be difficult to account for

the simultaneous change of so many customs together, rather than a simple change in the

terms of various obligations. It required a change in tenant-landlord conventions, rather

than simply the terms of the contract.6 In addition, the mechanism is not simply manorial

competition for labor: there was a wave of peasant unrest in the decades after the Black

Death, culminating in the Great Peasant Revolt of 1381, ranging from conspiracies to not pay

merchet to physical attacks on lords and the destruction of land records. The bargaining was

more collective than individual, as whole groups of villeins simultaneously offered different

terms: In Holywell-cum-Needingworth, there were large strikes in 1353 and 1386, along with

191 cases of individual refusal to perform labor services between 1353 and 1403 (compared

to the 21 such instances between 1288 and 1339) (Bailey, 2014). In 1379 Essex county, “the

tenants [collectively] offered their lord 40 [shillings] to set fixed monetary sums for rents and

services.” (Poos, 1991, pp. 247). There is also evidence of a “seigneural reaction” where lords

attempted to squeeze more servile dues out of their tenants, as well as using powers granted

to them by the 1351 Statute of Labourers, as our model would suggest. Nonetheless, by the

mid-15th century, the panoply of feudal norms was extinct, with little change in formal law.

Beyond the changes in economic conventions, the cultural norms regulating the interactions

between peasants and lords also changed. For example, Bailey (2014) notes that the language

used in manor records to describe relationships with villeins was upgraded from “bondage”

6As North and Thomas (1971, pp. 799) write “When a change of parameters offers potential gains from
establishing new secondary institutional arrangements, these may not be directly realizable simply because
they run counter to the basic rules of society.” While North and Thomas stress common law changes, recent
research shows that the changes in customs predated the legal changes by at least a century Bailey (2014).
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and “villeinage” to more dignified modes of address. The historian E.B. Fryde (Fryde, 1996,

pp. 6) writes:

throughout the 1380s and long beyond them...the servile velleins refused with ever
increasing persistence to accept the implications of serfdom, ... In this atmosphere
of frequent local disorder and of continuous tension between lords and tenants, the
direct exploitation of domanial estates would largely disappear from England in
the fifty years after the [1381] Great Revolt.

Proposition 1 qualitatively captures this transition. Suppose the serfdom convention is

U and the leasehold convention is E. The Black Death likely both made E risk-dominant

and also lowered η. In an intentional deviation environment (where leaseholders do not ask

to be villeins and lords do not spontaneously offer serfs leaseholdings) then the equilibrium

could have stayed at U if all that had changed was the payoffs. But because η also fell,

the transition from U to E was quite rapid: with relatively few peasants, it only took a

small number of peasants demanding new terms to induce lords to concede their traditional

privileges. Serf migration also increased in the years following the Black Death: in the

language of our model, the bipartite peasant-lord network was less likely to be P − fragile,

further facilitating a transition from U to E. The dynamics of this transition are captured by

our approach: the heterogeneous, piecemeal, occasionally reversed, and gradual transition,

well after the initial shock, is how a transition from an unequal to equal convention would

occur in the network extension of our model studied in Section 3.

5.2 South Africa

South Africa’s transition to democracy provides another reason to extend the standard evo-

lutionary model, and a contrast with the top down approach. Acemoglu and Robinson

(2006, pp. 13) write that “the basic structure of apartheid was unaltered” until “De Klerk

concluded that the best hope for his people was to negotiate a settlement from a position of

strength”. For Acemoglu and Robinson, South Africa’s new institutions were introduced as

the result of the formal constitutional negotiations beginning in 1990. Consistent with their

view that economic institutions will only change after the political institutions change, owing

to commitment failures, they conclude that the change in economic institutions resulted from
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the introduction of a new political system. However, our reading of the historical evidence

is that fundamental changes in economic practices and hence de facto economic institutions

predate De Klerk’s rise to prominence in the National Party, and are more plausibly seen as

the cause of the subsequent political transition, rather than its consequence.

Rather than simply a set of laws, crucial dimensions of South African apartheid can be

modeled as a convention regulating relations between employers and black African workers.

Formal apartheid labor regulations, such as pass-laws and Master and Servant laws were

an important component of Apartheid, but they buttressed and formalized a large set of

informal racial practices not explicitly legislated.

Having existed de facto throughout most of South Africa’s recorded history, the apartheid

system was formalized in the early 20th century and strengthened in the aftermath of World

War II. For white business owners, the convention might be expressed as follows: Offer only

low wages for menial work to blacks. For black workers the convention was: Offer one’s

labor at low wages, do not demand access to skilled employment. These actions represented

mutual best responses: As long as (almost) all white employers adhered to their side of the

convention, the black workers’ best response was to adhere to their aspect of the convention,

and conversely.

A wave of strikes beginning in the 1970s (particularly the 1973 Durban strike) and peaking

in the 1980s together with the refusal of Soweto students to attend classes taught in Afrikaans

and the ensuing 1976 uprising signaled large scale rejection of the apartheid. While these

protests were not entirely spontaneous, of course, the African National Congress leadership

were in exile or prison at the time and had limited capacity to coordinate or direct these

bottom up challenges to the status quo.

Consistent with this, Mariotti (2012) shows that African occupational segregation was

falling well before the formal democratization. Indeed, her data shows that the relative

share of black production workers in manufacturing sharply grows between 1974 and 1979,

consistent with a response to the unrest (and prior to the enactment of 1979 labor market

reforms). Many business leaders concluded that adherence to the apartheid convention

was no longer a best response, leading them independently to alter their labor relations,

raising real wages and promoting black workers. One Anglo-American executive commented:
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“. . .in the business community we were extremely concerned about the long-run ability to

do business. . .” (Wood, 2003, pp. 171). By 1981, the CEO of Barlow Rand found himself

describing the new convention: “[he] said that Black trade unions were a fact of life” (Wood,

2003, pp. 137).

The business community eventually did come together to develop a political strategy

for managing the transition, but only well after significant dimensions of apartheid had

already unravelled. Starting in the mid 1980s, the Anglo-American Corporation developed

new policies for ‘managing political uncertainty’ and to address worker grievances, even

granting workers a half day off to celebrate the Soweto uprising. In September 1985, Anglo

American’s Gavin Relly led several business leaders on a clandestine “trek” to a secret place

near Lusaka to seek common ground with African National Congress leaders in exile, on

both political and labor market institutions. In 1986 the Federated Chamber of Industries

issued a business charter with this explanation: “the business community has accepted that

far reaching political reforms have to [be] introduced to normalize the environment in which

they do business.” The centralized bargaining over political institutions only took place

well-after the decentralized transition in economic conventions was underway.

Note the following about this process: As with our serfdom example above, the concession

of best-responding businesses to rejection of apartheid by black workers occurred well before

the political transition. Second, the process of transition was extremely abrupt, bringing

to an end in less than a decade de facto class and race relations that had endured for

decades. Third, while trade unions, ‘civics’ (community organizations), and other groups

were involved in the rent strikes, student stay aways, and strikes against employers, the

piecemeal and de facto transition away from apartheid was substantially decentralized and

only loosely coordinated prior to the 1990 unbanning of the ANC.

5.3 Racial Desegregation in the Southern U.S

The desegregation of the U.S. South in the 1960s also followed a logic close to our model.

Racial segregation in the U.S. South was of course sustained by laws, but had an important

component of informal convention. And during the 1950 and early 1960s it was well on

the way to unravelling on the ground before desegregation was recognized in law. Protests,
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intentional violations of status quo norms, played an important, if understudied, role in de

facto desegregation. Our task is not to explain the complex process that produced the Civil

Rights movement and its successes, but rather to show that informal racial conventions were

destabilized by a large number of relatively small, intentional, shocks generated by activists

and participating citizens.

The status-quo unequal convention was that blacks and whites would interact in seg-

regated public spaces, while an alternative, more equal convention was integrated public

interaction. Jim Crow etiquette included hierarchical modes of address, where blacks ref-

ered to whites in positions of authority as “Boss”, and their children as “Massa”, but white

employers and customers referred to black workers as “Boy” or “Uncle” or “Old Man” (re-

gardless of age). A simple, concrete example could be of bus seats: the unequal convention

is that black riders would sit in the back of the bus and as more whites boarded the bus

would give up their seat to white riders. The equal convention is that whoever arrives first

retains the seat, but many others could be constructed.

The desegregation of the U.S. South in the 1960s shows the importance of intentional

deviations that, prior to formal recognition by government, change a status-quo convention.

The eruption of boycotts, sit-ins, pickets and other challenges to racial norms (Figure 7)

eventually won the passage of the Civil Rights Act of 1964 (McAdam, 1990). Before the

formal legal changes, however, the protests immediately forced whites in some localities to

change their behavior. Wright reports that “[Dallas] civic leaders responded to picketing

by arranging for blacks to be served at forty-nine downtown restaurants on July 26, 1961,

followed by removal of white-only signs.” Figure 8 shows the extent of de facto desegregation

in the South prior to the first federal legislation in 1964. Segregation had been a convention,

conformism to which was initially an individual best response for both whites and blacks.

But when large numbers of blacks rejected the convention, this altered the best response

calculations of whites, inducing them to abandon racial norms of exclusion.

The importance of the civil rights movement was not just in winning legislation from

the federal government, but also in changing norms in the South. Wright (2013, pp. 67)

writes “when the demonstrators showed their persistence by returning for new rounds of

protest, business and civic leaders in many cities were ready to acquiesce”. As can be seen
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from Figure 7, black students and citizens began protesting the Jim Crow institutions of

the south beginning in the 1950s, with little success or momentum. However, as McAdam

(1983) notes, beginning in 1960, a wave of protest took over in the South. Louis Oberdorfer,

assistant attorney general in the early 1960s, wrote in his report to the federal government

that “after demonstrations by Negroes, positive, concrete steps have been taken towards the

meeting of their just demands by desegregating movie theaters and removing racial signs

from restrooms.”. White citizens in over 100 cities voluntarily desegregated lunch counters

within a year of the first sit in (Wright, 2013).

Figure 7: Civil rights movement actions. Data from McAdam (1983).

Data from Oberdorfer’s reports (Oberdorfer, 1963) documents that the diffusion of these

norms was uneven, with some cities desegregating earlier than others. The subsequent pat-

tern of desegregation showed the “local uniformity” and “global heterogeneity” that charac-

terize models of local updating Young and Burke (2001).7 Oberdorfer continued his descrip-

tion of the changes in the South prior to 1965 with:

“As desegregation has so rapidly spread, a curious patchwork pattern of deseg-

regated establishments has been created. In some cities movie theatres are de-

segregated while in others, everything is except theaters. Lunch-counters are the

7Young and Burke (2001, pp. 560) describe similar patterns in their evolutionary account of sharecropping
contracts in Illinois “There are regional “patches” where contractual terms are nearly uniform, separated by
boundaries where contractual norms jump substantially from one set of terms to another.”
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Figure 8: Voluntary Desegregations in Southern cities prior to July 2, 1964 Civil
Rights Act. Data from reports to Attorney General (Oberdorfer, 1963).

most desegregated facility; yet restaurants are the least. In a number of towns,

four wall movie houses desegregated without incident yet drive-in theaters in these

same towns remain segregated. There are places where motels are desegregated,

hotels are not; in others, hotels are but motels are not. In some motels or hotels,

Negroes can rent rooms but can not use the restaurant; in some others, they can

eat but not sleep. Some hotels or motels open their doors of their restaurants to

“transient” Negroes, but not to those who are residents of the area,”

Our model asks what features of the Jim Crow equilibrium made it stable for 100 years

after the end of slavery, what made it vulnerable to mass norm violation, as well as account-

ing for its sudden yet patchwork erosion across venues even within a town. The model echoes

forces that other scholars (Chong, 1991) have suggested as contributing factors: organization

by churches, unions, and the NAACP, which generated intentional deviations from Jim Crow

conventions, the smaller population of blacks, particularly following the waves of the Great

Migration in the preceding 50 years, the increased urbanization and industrialization of the

South, as well as the expansion of national media, changed the interaction structure between

blacks and whites from the previous rural economy, making blacks less susceptible to idiosyn-

cratic local white behavior. This occured in part by expanding the once “parochial” scope of

vision of rural African-Americans who moved to the city (McAdam, 1990). Importantly, as
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Wright (2013) argues, market and technological changes made it so that many whites stood

to gain from de-segregation (decreasing aR), which plays an important role in determining

which conventions persist in the long-run.

Theorem 2 gives conditions that could have made segregation a durable convention. The

salience of race guaranteed a high degree of intentionality ι, as both whites and blacks

were unlikely to experiment with conventions that went against that group interest. In

addition, blacks were both a large share of the population and not highly mobilized for much

of the post-Reconstruction period, and this resulted in a high η. Finally, the population

interaction structure made blacks very vulnerable to idiosyncratic play by whites, as many

different black communities had to deal with only a few landowning and money-lending

whites. Idiosyncratic play by a few whites could induce many black communities to acquiesce

to segregation, and this made transitioning to the segregated strategy easier for all the other

whites with whom these communities interacted.

The Southern interaction structure was fragile for blacks, contributing to the stability

of the Jim Crow equilibrium. Geographic and social segregation ensured that rural black

communities relied on whites as a bridge to information or trade with the larger economy, for

example landowners or storeowners, who in turn interacted with many black communities.

The transition from Reconstruction to Jim Crow, while certainly enshired in law, also entailed

a decentralized change in racial conventions. Thus a small amount of idiosyncratic U behavior

by the whites (e.g. demanding deferential behavior of blacks, such as relinquishing seats)

could induce a set of blacks to respond by acquiescing. The local whites who shared a

large proportion of their cross-race interactions with that set of blacks will then find it

optimal to play U also, generating a local stable pocket of segregation that was vulnerable

to further idiosyncratic behavior of whites. Thus Jim Crow could diffuse even in the absence

of government statute.

There are many historical examples of communities that held out against the propagation

of racial norms in the pre-civil rights U.S. South (Dittmer, 1994). For example, Mound

Bayou, Mississippi, was a town in the Mississippi Delta founded by ex-slaves in 1887, and

close to 100% black. Notably, even the plantation owners in the town were black, the town

had no racial codes, and even white visitors complied with the desegregated convention.
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It became a springboard the civil rights movement starting in the early 1950s, holding

annual rallies, housing civil rights leaders from out of the Delta, and producing many key

boycott organizers.While economic benefits, violence, and government fiat were undoubtedly

important in changing the payoffs to various strategies, our model shows how these payoff

changes combine with P-fragility in the interaction structure and intentional idiosyncratic

play to stabilize unequal conventions.

Theorem 2 also shows conditions that may have increased the likelihood of a transition

from the segregated convention to the unsegregated one. A fall in aR, for example, which

would be a fall in the benefits to whites of segregation, owing to farm mechanization, lack

of external investment or federal sanctions, would lower the thresholds ι∗, η∗ as well as

increasing the set of networks with the required level of P-fragility. All these forces would

increase the likelihood of a transition, holding ι and η constant. NAACP organizing and

black church consciousness raising could have increased ι, while the earlier Great Migration

and civil rights mobilization would have both lowered η (recall that η captures both the

(inverse) rate of idiosyncratic play as well as the relative population size) (Hornbeck and

Naidu, 2014; McAdam, 1983).

The transition paths generated in the model in this section look like the actual historical

transition paths in the U.S. South, where, starting from the U convention, small clusters

playing E formed and gradually diffused.

In our model, Mound Bayou mentioned above was an early intermediate state consisting

of a small cohesive cluster of E playing agents in a larger population of agents playing U .

But this cluster interacted with changing payoffs and networks during the civil rights era: it

made it easier for adjacent poor agents, such as the Mound Bayou insurance agent Medgar

Evers, to idiosyncratically play E, for example boycotting segregated gas stations in the

1950s, propagating the E convention to other white populations. While there are many

differences between our stylized model and the dynamics of historical desegregation, the

percolation of new, egalitarian racial codes across the South prior to the Civil Rights Act

in response to idiosyncratic deviations of black agents is a feature of our model that other

models do not capture as naturally.

We think this pattern is not unique to the civil rights movement or changing norms
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of racial segregation, but instead is a common feature of rapid cultural changes that upset

unequal conventions (as in the serfdom and apartheid examples above). Deliberate violations

of norms induce a small location to change equilibrium, and this new equilibrium percolates

through the whole population depending on the pattern of interactions.

6 Conclusion

Unequal social norms, such as racial, gender, and labor market conventions are present

throughout history, and transitions between them often the outcome of intentional deviations

from the status quo. The standard model of equilibrium selection in evolutionary games

provides guidance for the emergence and persistence of conventions in single-population

coordination game environments where idiosyncratic play is likely to be undirected. But

an evolutionary model with directed idiosyncratic behavior of the type we have presented

may be more appropriate for selecting among conventions with distributional consequences,

where it is likely that individuals are influenced by organizations and ideologies that account

for group interests in alternative equilibria.

We have shown that enriching the standard evolutionary model with intentional idiosyn-

cratic play, differential group size and explicit network structure yields predictions in the

contract game consistent with a wider range of historical experiences: when intentionality

(measured by ι) is high, transitions will be driven by those who stand to gain from the

transition, larger and less mobilized populations will be disfavored, and lack of information

among the less well off will result in unequal conventions being selected.

The enhanced evolutionary model also provides a framework for studying influences on

the political economy of inequality stressed by historians and social scientists. Included is

the privileged access to information that elite groups often enjoy and the way that ideology,

organization, and leadership may affect the frequency and intentionality of deviations from

a status quo unequal convention.

In Appendix D, we explore an extension of our model that endogenizes population struc-

ture, generating a relationship between intergenerational mobility and cross-sectional in-

equality. In the extension, we show that there is a barrier to upward mobility out of the dis-
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advantaged class sufficient to stabilize an unequal convention. This occurs because restricted

mobility enlarges the poorer class sufficiently to make a high level of inequality stochastically

stable, even if the convention implementing it is not risk-dominant. Our model’s evolution-

ary dynamic thus yields a simple version of the “Great Gatsby Curve” (Corak, 2012), where

low intergenerational mobility is associated with high cross-sectional inequality.

We have provided a number of historical examples of deliberate deviations from the status

quo inducing a transition to a more egalitarian convention. In our examples, centralized

collective action at the population level played little role, and de jure changes in laws were

likewise not important. While we leave the formulation of precise empirical tests to future

work, one distinct feature of our theory is the formulation of explicit dynamics of change

(and attempted, unsuccesful, change), something that existing non-evolutionary models have

a difficult time capturing. Empirical work examining dynamic patterns of changes in social

norms (for example the linguistic changes studied in Naidu et al. (2017)) is likely to provide

an informative test of our model against, say, the standard evolutionary model. Finally, while

we have deliberately abstracted from the role of formal laws and sanctions in modelling the

evolution of unequal social norms, it is not that we think these are unimportant. Extending

the model to allow richer interactions between formal laws and informal social norms is an

important direction for future work.
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A Appendix (Not For Publication)

To economize on notation, throughout the Appendix we let

ζP :=
b

b+ aP
, ζR :=

b

b+ aR

i.e., ζP is the minimum fraction of rich agents in the poor village which induces the poor
agents switch their best responses from E to U . ζR can be interpreted similarly. Observe
that from our assumption in Section 2.1, aP < b < aR, we have 1

2
< ζP < 1 and 0 < ζR <

1
2
.

We begin by re-stating and proving Proposition 1.

Proposition 4. There exist ι∗ > 1, η̄ > 1 and η∗ > 1 such that:
(i) Suppose that E is risk-dominant. Then U is stochastically stable if and only if ι > ι∗ and
η > η∗.
(ii) Suppose that U is risk-dominant. Then E is stochastically stable if and only if ι < ι∗

and η > η̄.

Proof. For the convenience of notations, let α := 1 − ζR and β := ζP . Then, α > 1
2

and
β > 1

2
hold. We let ĉ(U,E) = min{ηα, ι(1− β)} and ĉ(E,U) = min{β, ιη(1− α)}. We first

prove (i). Notice that E is risk-dominant if and only if α < β. We let

ι∗ :=
β

1− β
η∗ :=

β

α

Then, if ι > ι∗, then ι(1 − β) > β and if η > η∗, then ηα > β. Thus, U is stochastically
stable and “if part” follows. To show “only if part”, we show that if ι < ι∗ or η < η∗, then
E is stochastically stable (when ι = ι∗ and η = η∗, the similar argument shows that both U
and E are stochastically stable and hence the desired result follows). Suppose that ι < ι∗ or
η < η∗ . We divide cases.
Case 1: ηα < ι(1− β) and β < ιη(1− α). In this case, we have ĉ(U,E) = ηα, ĉ(E,U) = β.
If η < η∗, then ηα < β, thus E is stochastically stable. If ι < ι∗, then ηα < ι(1 − β) < β
and again ηα < β, thus E is stochastically stable.
Case 2: ηα > ι(1 − β) and β < ιη(1 − α). Then, ĉ(U,E) = ι(1 − β), ĉ(E,U) = β. Thus if
ι < ι∗, then E is stochastically stable. If η < η∗, then ι(1− β) < ηα < β. Thus again, E is
stochastically stable.
Case 3: ηα > ι(1 − β) and β > ιη(1 − α). Then, ĉ(U,E) = ι(1 − β), ĉ(E,U) = ιη(1 − α).
Since η ≥ 1, ιη(1− α) > ι(1− β) and thus E is stochastically stable.
Case 4: ηα < ι(1−β) and β > ιη(1−α). In this case, we have α < ι(1−β) and β > ι(1−α).
Thus we have β

1−α >
α

1−β which implies that β − α > (β − α)(β + α) and since β > α, this

implies α+ β < 1 which is a contradiction. Thus Case 4 cannot occur. When ηα = ι(1− β)
or η = η∗, the similar arguments as above hold and thus we obtain the desired result.

We next prove (ii). Then U is risk-dominant if and only if α > β. We let

ι∗ :=
β

1− β
η̄ :=

1− β
1− α

.

Then suppose that ι < ι∗ and η > η̄. Then ιη(1−α) > ι(1−β) and β > ι(1−β). Thus E is
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stochastically stable and “if part” follows. To show “only if part”, we show that if ι > ι∗ or
η < η̄, then U is stochastically stable (again when ι = ι∗ and η = η∗, the similar argument
shows that both U and E are stochastically stable and hence the desired result follows).
Suppose that ι > ι∗ or η < η̄. We divide cases.
Case 1: ηα < ι(1− β) and β < ιη(1− α). In this case, we have ĉ(U,E) = ηα, ĉ(E,U) = β.
Since α > β, ηα > β. Thus U is stochastically stable.
Case 2: ηα > ι(1 − β) and β < ιη(1 − α). Then, ĉ(U,E) = ι(1 − β), ĉ(E,U) = β. Thus if
ι > ι∗, then U is stochastically stable. If η < η̄, then β < ιη(1− α) < ι(1− β). Thus again,
U is stochastically stable.
Case 3: ηα > ι(1 − β) and β > ιη(1 − α). Then, ĉ(U,E) = ι(1 − β), ĉ(E,U) = ιη(1 − α).
If ι > ι∗, then ι(1 − β) > β > ιη(1 − α). Thus U is stochastically stable. If η < η̄,
ι(1− β) > ιη(1− α). Thus U is stochastically stable.
Case 4: ηα < ι(1 − β) and β > ιη(1 − α). In this case, we have ĉ(U,E) = ηα, ĉ(E,U) =
ιη(1− α). Since ηα > β > ιη(1− α), U is stochastically stable.

A.1 Cohesiveness and Stochastic Stability of the E Convention

In this Appendix we define R-fragility analogously to P-fragility in the text, and provide
conditions on Λ = (ΛR,ΛP ) under which the E convention is stochastically stable.

Definition 5. We say that a bipartite graph is R-fragile (qP , qR) if
(i) For some SR, every S ′R containing SR is qP -cohesive with N(S ′R).
(ii) Every N(SR) is qR-weak-cohesive with (SR)c.

Note that, compared with Definition 2, qP in (i) and qR in (ii) are switched. This is
because the network condition (i) stabilizes the deviant play of the poor agents, hence need
to be compared with the payoff condition stabilizing the deviant play (E) of the poor agents
(1 − ζP ) and the network condition (ii) stabilizes the reacting play (E) of the rich agents,
hence need to be compared with the payoff condition stabilizing the reacting play of the rich
agents (1− ζR).
We then have the following characterization for the equal convention.

Proposition 5. Suppose that the bipartite graph is R-fragile (1− ζP , 1− ζR). Suppose also
that

minx∈ΛP |Nx|
miny∈ΛR |Ny|

≥ 1− ζR
ζP

. (17)

and η = 1. There exists ι∗ < 1 such that for all ι < ι∗, E is stochastically stable.

Proof. See the appendix in B.

The additional restriction on minimum vertex degree is necessary in the case of the E
convention because we have imposed a lower bound of 1 on η. We also have the following
corollary.
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Corollary 1. Suppose that the bipartite graph is R-fragile (1 − ζP , 1 − ζR) and η = 1 and
minx∈ΛP |Nx| ≥ miny∈ΛR |Ny| Then there exist ι∗ < 1 such that for all ι < ι∗, if E is risk-
dominant, then E is stochastically stable.

Proof. The condition that E is risk-dominant if and only if b2 > aRaP if and only 1 > 1−ζP
ζR

.
Thus the result immediately follows from Proposition 5.

A.2 Proofs

Before we prove Theorem 2, we show Lemma 1.

Proof of Lemma 1. If ι <∞, then the chain can reach any state with a positive probability,
hence the chain is irreducible. Suppose that ι = ∞. In this case, the poor agents idiosyn-
cratically play E only, while the rich agents idiosyncratically play U only. We show that
the chain has only one recurrent class. First, since the chain is finite, there exists at least
one recurrent class. Recall that EU and EE be the states where every agent uses U and E,
respectively. Then by the intentional idiosyncratic behaviors, EU and EE communicate and
belong to the same recurrent class, denoted, R. Let σ 6∈ R. Then again by the intentional
idiosyncratic behaviors of either poor agents or rich agents, the chain can reach either EE
or EU with a positive probability. Since σ 6∈ R, this shows that σ is transient. Thus there
exists a unique recurrent class, R, containing EE and EU . Since the chain has a unique
(positive) recurrent class, the standard results on Markov chains show that there exists a
unique invariant measure (see, e.g., Shiryaev (2000)).

A.3 Proof of Theorem 2

We prove Theorem 2 using a series of lemmas. First, we define some notations. Recall that

σ(x) = (σ1(x), σ2(x), · · · , ση(x)) for all x ∈ ΛP

and
σ = ({σ(x)}x∈ΛP , {σ(y)}y∈ΛR)

Let βx(σ) for x ∈ ΛP be the best responses of the agents at x at σ and βy(σ) for y ∈ ΛR be
the best response of the agent at y at σ. We let β : Ξ→ Ξ be the map in which β(σ) is the
state obtained by making all the agents to play the best responses at σ: i.e.,

β(σ) = ({βx(σ)}x∈ΛP , {βy(σ)}y∈ΛR)

Then we say that E is a stable state if β(E) = E . We denote by EE and EU the stable states
where all agents play E and U , respectively (see Panel A in Figure 4). We also denote by
EM be the stable state in which some agents play E and other agents play U . Finally, we
let #(σ) be the number of sites, whether poor or rich, at which agents play strategy U :

#(σ) =
∑
x∈ΛP

1{σ(x) = U}+
∑
y∈ΛR

1{σ(y) = U}
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where 1A = 1 if A is true and 1A = 0, otherwise.
Using the definition of qP and qR given above, the condition of theorem 2 is that the

bipartite graph is P-fragile (qP , qR). Then, the following two conditions hold:

A1 There exists a SP and there exists qR such that for all S ′P ⊃ SP

min
y∈N(S′P )

|Ny ∩ S ′P |
|Ny|

≥ qR

A2 For every SP , there exists x′ 6∈ SP such that

|Nx′ ∩N(SP )|+ 1

|Nx′|
≥ qP

In the following proof, we will use the following facts:

If d|Nx|ζP e of the rich agents in the neighborhood of the poor village at x play U , (18)

then βx(σ) = U

If dη|Ny|ζRe of the poor agents in the neighborhood of the rich site at y play U , (19)

then βy(σ) = U

Let SP be the set satisfies A1. We let S0
R(SP ) be the minimum size set of rich agents which

ensures that each poor in SP has at least d|Nx|qP e interactions with the rich agents in the
set. That is, the set, S0

R(SP ) ⊂ N(SP ) is the minimum size set which is qP -cohesive with
SP :

|S0
R(SP )| := min{|SR| : min

x∈SP

|Nx ∩ SR|
|Nx|

≥ qP} (20)

where SP is given by A1. Indeed, for x ∈ SP , |Nx∩SR| ≥ |Nx|qP implies |Nx∩S| ≥ d|Nx|qP e
(since |Nx ∩ S| is an integer). Thus, each poor x in SP has at d|Nx|qP e interaction with the
rich agents in S0

R(SP ).

Lemma 4. Suppose that A1 holds.

min
E ′ 6=EE

C(EE, E ′) ≤ |S0
R(SP )|.

Proof. We will construct a path γ from EE to some stable state E ′. Let S∗P := SP be the
set given by A1. Suppose that rich agents in S∗R := S0

R(SP )( in (20)) idiosyncratically play
U . We denote by σ′ the new state obtained by these switches (Panel B in Figure 4). We let
E ′ = βl(σ′) for some l ≥ 2 such that βl+1(σ′) = βl(σ′)(Panel C in Figure 4). Here observe
that from σ′ to β(σ′) the poor village agents change their best responses, while from β(σ′)
to β2(σ′) the rich agents change their best responses and so on. Since each x ∈ S∗P interacts
with d|Nx|qP e number of U playing rich agents,

βx(σ
′) = U for all x ∈ S∗P . (21)
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which implies that
β2
x(σ

′) = U for all x ∈ S∗P . (22)

Now let y ∈ N(S∗P ). Then from A1,

|Ny ∩ S∗P |
|Ny|

≥ qP ⇐⇒ η|Ny ∩ S∗P | ≥ dη|Ny|qP e (23)

since η|Ny ∩ S∗P | is an integer. Then from βx(σ
′) = U for all x ∈ S∗P , there are at least

η|Ny ∩ S∗P | number of the poor village agents in the neighbor of y playing U at the state,
β(σ′); thus βy(β(σ′)) = U . Thus we have

β2
y(σ

′) = U for all y ∈ N(S∗P ). (24)

Thus, (22) and (24) show that

βlx(σ
′) = U for all x ∈ S∗P , βly(σ′) = U for all y ∈ N(S∗P )

which shows that E ′ 6= EE. Now we let

γ : EE → σ′ → β(σ′)→ βl(σ′) = E ′

Then c(γ) = |S0
R(S∗P )|, where c(γ) is the cost of a path γ and we obtain the desired result.

Next, we show the following lemma.

Lemma 5. Suppose that A1 and A2 hold. Then we have

C(EM , E ′) = 1 for some E ′ such that #(E ′) > #(EM)

Proof. Let EM be given. Then by the definition of EM and from Lemma 4, there exists
S∗P × S∗R := S∗P ×N(S∗P ) such that for all x ∈ S∗P , σ(x) = U , for all x′ 6∈ S∗P , σ(x′) = E, and
for all y ∈ S∗R := N(S∗P ), σ(y) = U . Then from A2, there exists x′ 6∈ S∗P such that

|Nx′ ∩N(S∗P )| ≥ d|Nx′ |qP e − 1

Since x′ 6∈ S∗P , σ(x′) = E. Then we chooses y ∈ Nx′ such that σ(y) = E. (such y exists,
otherwise for all y ∈ Nx′ , σ(y) = U implies σ(x) = U , a contradiction.) Let σ′ be the state
induced by one idiosyncratic play of the rich agent at y′ from E to U and let E ′ = βl(σ′)
for some l ≥ 2 such that βl(σ′) = βl+1(σ′). Then out of |Nx′| neighbors of x′, there are (at
least) |Nx′ ∩ N(S∗P )| number of U playing rich agents (since all agents in N(S∗P ) play U).
Thus one idiosyncratic play (from E to U) by the rich agent at y′ ∈ Nx′ induces a change
in the poor agents’ best responses at x′ from E to U , since |Nx′ ∩ N(S∗P )| + 1 ≥ d|Nx′ |qP e
(Panels D and E in Figure 4): i.e., βx′(σ

′) = U which implies

β2
x′(σ

′) = U (25)

Let SP = S∗P ∪ {x′}, N(SP ) = S∗R ∪ {Nx′}. Then from A2 and (23), SP is again qP -cohesive
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Figure 9: A minimal tree. Here we present a minimal tree for the 1-d bipartite graph in
Figure 2.

with N(SP ) and we find that

β2
y(σ

′) = U for all y′ ∈ N(SP ). (26)

Thus (25) and (26) show that

βlx(σ
′) = U for all x ∈ S∗P ∪ {x′}, βly(σ′) = U for all y ∈ N(S∗P ∪ {x′}),

which shows again E ′ 6= EM . Then,

γ : EM → σ′ → β(σ′)→ βl(σ′) = E ′

and observe that #(E ′) > #(EM). Thus, we obtain the desired result.

Lemma 6. We have

min
E ′ 6=EU

C(EU , E ′) ≥ min
x∈ΛP

ι d|Nx|(1− ζP )e ∧ min
y∈ΛR

dη|Ny|(1− ζR)e

where a ∧ b := min{a, b}.

Proof. Observe that to escape EU , either the rich agents or the poor agents play idiosyn-
cratically which induce the other population agents to switch their best responses. By the
definitions of qP and qR, we see that minx∈ΛP d|Nx|(1− qP )e is the minimum number of the
rich agents to induce changes in the best responses of the poor population and the cost of
such idiosyncratic plays is given by minx∈ΛP ι d|Nx|(1− qP )e. Similarly, the minimum num-
ber of the rich agents to induce the changes in the best responses of the poor population is
given by miny∈ΛR dη|Ny|(1− qR)e, which give us the desired results.

We have the following lemma.

Lemma 7. Suppose that

For all EM , C(EM , E ′) = 1 for some E ′ such that #(E ′) > #(EM) and min
E ′ 6=EU

C(EU , E ′) > min
E ′ 6=EE

C(EE, E ′).

Then EU is stochastically stable.
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Proof. The proof uses Proposition 2 in Binmore et al. (2003). Under the hypothesis, we
construct a minimal tree whose root is at EU (see Figure 9). First consider the state EE.
We find E ′′ such that C(EE, E ′′) = minE ′ C(EE, E ′). We connect EE to E ′′ with an edge.
If E ′′ = EU , then we stop. Otherwise applying the fact that C(EM , E ′) = 1 for some E ′
successively, we obtain a sequence of edges leading to EU . In this way, we can construct
a sequence of edges from EE to EU . Next, choose EM such that #(EM) is smallest. If EM
already has an edge to E ′M such that #(E ′M) > #(EM), then we choose other EM . Again
using the fact that C(EM , E ′) = 1 for some E ′, we can find a sequence of edges leading to
EU . In this way, we define sequences of edges from all the stable set EM such that #(EM)
is smallest. Next we move on to EM such that #(E) is second smallest. By proceeding in
this way, we can construct a EU rooted tree (see Figure 9). Then it is easy to see that the
constructed tree is a naive minimization tree and hence the desired result follows.

Now we are ready to prove our main theorem, Theorem 2, which we state again for
convenience of readers.

Theorem 1. Suppose that the bipartite graph is P-fragile (qP , qR). Then there exists ι∗ and
η∗ such that for all ι > ι∗ and η > η∗, U is stochastically stable. More precisely, ι∗ and η∗

are given by

ι∗ :=
|S0
R(SP )|

minx∈ΛP d|Nx|(1− ζP )e
and η∗ :=

|S0
R(SP )|

miny∈ΛR |Ny|(1− ζR)

where |S0
R(SP )| is defined in (20).

Proof. Let ι > ι∗ and η > η∗. Then if we show that

min
x∈ΛP

ι d|Nx|(1− qP )e ∧ min
y∈ΛR

dη|Ny|(1− qR)e > |S0
R(SP )|

Lemmas 4,5,6 and 7 show that U is stochastically stable. First, minx∈ΛP ι d|Nx|(1− qP )e >
|S0
R(SP )| follows from our choice of ι∗. Next, we show that miny∈ΛR dη|Ny|(1− qR)e >
|S0
R(SP )|. Observe that dη|Ny|(1− qR)e ≥ η|Ny|(1− qR). Thus we obtain miny∈ΛRdη|Ny|(1−

qR)e ≥ miny∈ΛR η|Ny|(1− qR). Thus we find

min
y∈ΛR
dη|Ny|(1− qR)e ≥ min

y∈ΛR
η|Ny|(1− qR) > min

y∈ΛR
η∗|Ny|(1− qR) > |S0

R(SP )|

which is the desired result and EU is stochastically stable.

B Proof of Proposition 5

Proof. We show the following three:
(i) Since the bipartite graph is R-fragile (1 − ζP , 1 − ζR) for all y ∈ ΛR, {x} is qP -cohesive
with Ny. Thus for all y ∈ ΛR,

min
x∈Ny

|Nx ∩ {y}|
|Nx|

≥ 1− ζP
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Thus, we have for all x ∈ ΛP , 1 > |Nx|(1− ζP ) and hence 1 ≥ maxx∈ΛP d|Nx|(1− ζP )e. Thus
one rich playing E ensures that all his neighboring poor agents play E as best responses
(autonomous condition).
(ii) Again since the bipartite graph is R-fragile (1− ζP , 1− ζR), for every SR such that

|Ny′ ∩N(SR)|+ 1

|Ny′|
≥ qR

This implies that for every y ∈ ΛR, there exists y′ ∈ ΛR such that

|Ny ∩Ny′ | ≥ d|Ny′|(1− ζR)e − 1

which ensures the propagation condition.
(iii) First recall that ζR < 1/2 and ζP > 1/2. Also if (17) holds, then minx∈ΛP d|Nx|ζP e >
miny∈ΛRd|Ny|(1 − ζR)e. Thus we have ιminx∈ΛP d|Nx|ζP e > ιminy∈ΛRd|Ny|(1 − ζR)e. We
choose ι∗ < 1 such that for all ι < ι∗, miny∈ΛRd|Ny|ζRe > ιminy∈ΛRd|Ny|(1− ζR)e. Then we
have

ι min
x∈ΛP
d|Nx|ζP e ∧ min

y∈ΛR
d|Ny|ζRe > ι min

y∈ΛR
d|Ny|(1− ζR)e

for all ι < ι∗. Then by following the same steps as in the proof of Theorem 1, we obtain the
desired result.

C Proof of Proposition 3

Proof. Since ι = ∞, from EU only the poor agents play idiosyncratically and from this we
obtain

min
E ′

C(EU , E ′) ≥
⌈

2κ
aR

aR + b

⌉
Next observe that d2 b

b+ap
e = 2 rich agents in the neighborhood of a poor agent ensures U to

be the best response of the poor agent and that d2κ b
b+aR
e poor agents in the neighborhood

of a rich agent ensures U to be the best response of the rich agent. Also notice that from

our assumption that aP < b,
⌈
2 b
b+aP

⌉
= 2 . To estimate minE ′ C(EE, E ′), first observe

that to escape E,
⌈
2 b
b+aP

⌉
= 2 number of R agents need to play idiosyncratically. Then⌈

2 b
b+aP

⌉
− 1 = 1 number of P agents who are surrounded by R agents best respond with

U . For each R agent who has idiosyncratically played U to retain U as a best response, at

least
⌈
2κ b

aR+b

⌉
out of 2κ neighboring P agents need to play U . Thus, to induce

⌈
2κ b

b+aR

⌉
P agents to use U ,

⌈
2κ b

b+aR

⌉
+ 1 surrounding R agents use U , since

⌈
2 b
b+aP

⌉
= 2 number of

R agents induces the neighboring one poor agent to play U . We show that a state where a

cluster of (consecutively located)
⌈
2κ b

b+aR

⌉
+1 R agents and neighboring

⌈
2κ b

b+aR

⌉
P agents

play U and all other agents play E is a stable state (see the sites in black in Figure 6). Thus,
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we find that

min
E ′

C(EE, E ′) ≤
⌈

2κ
b

aR + b

⌉
+ 1.

Next we suppose that E ′ be a stable state where some agents play U and other agents play
E. Then it must contains the cluster of sites found previously (see again the sites in black
in Figure 6). Then there exists one poor agent playing E with one neighboring rich agent
playing U and the other neighboring rich agent playing E (if not, we lead to a contradiction)
(see the sites in grey in Figure 6). Then by the idiosyncratic play of the rich agent from E
to U , the rich agent induces the poor to best respond with U . We let E ′′ be the resulting

state. Also, since E ′ is stable, the U playing rich agent faces
⌈
2κ b

aR+b

⌉
poor agents playing

U and thus the newly switched rich agent’s best response is also U (see Figure 6). Thus E ′′
is stable. This shows that C(E ′, E ′′) = 1 for some E ′′ such that #(E ′′) > #(E ′) and by the
same argument of the proof of Theorem 2, we have the desired result.

D Endogeneous Demographics

In this Appendix section, we endogenize the relative size of the two classes, η, and sketch an
extension of our model that incorporates an intergenerational mobility dynamic to the con-
vention selection process, following Bisin and Verdier (2000). Here, the equilibrium relative
size η∗ of the P and R classes depends on the wealth of the two classes which, because a rich
individual may interact with more than one poor individual, depends on the relative size of
the classes. We focus on the uniform random matching case from Section 2.1 with ι = ∞,
as it is more historically relevant when selecting between conventions with large differences
in payoffs for each group. In addition, to keep things tractable, we make a simplifying as-
sumption that the time scale of the population adjustment is sufficiently slow relative to the
transition times between conventions. This means that to each relative population η, we can
associate a stochastically stable convention.

Recall that Proposition 1 (ii) shows that when ι = ∞, U is stochastically stable if and
only if ⌈

ηNR aR
aR + b

⌉
>

⌈
NR b

b+ aP

⌉
Then, given the relative size of populations, η, we are able to determine the stochastic stable
states. More precisely, let Φ∗(η) be the stochastically stable state given relative population
size η:

Φ∗(η) =

{
U if η ≥ η∗,∞(ρ, θ)

E if η < η∗,∞(ρ, θ)
(27)

Without loss of generality where η = η∗,∞(ρ, θ) (from equation (5) in Section 2.1), we assume
U is stochastically stable, ensuring Φ∗(η) is unique. In the resulting model, the stochastically
stable contract and the relative sizes of the two classes will be jointly determined.

In the intergenerational mobility dynamic, we suppose that each generation randomly
matches into mating pairs, has 2 offspring, and then dies. We assume that when parents
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belong to the same class, the two offspring retain the parents’ class membership and only
the cross class couple’s offspring can change the class membership. We would like to capture
the fact that the probability of a child becoming a member of the R class is increasing in
parents’ joint wealth. To do this we posit a minimum parental wealth barrier to upward
class mobility, which could arise because class membership requires that one undertake a
project with a minimum size, for example, inheriting capital goods sufficient to employ
an economically viable team of workers or the amount needed to acquire the educational
credentials and social connections necessary to be an elite member.

We will define wealth as the cumulative payoff across all interactions within a period.
Rather than modelling the complex distribution of individual wealth, we take a reduced-
form approach and define the per-capita wealth of each class as the product of the number
of members of the other class and the average payoff from each interaction. Thus, the wealth
of a R agent (yR = yR(η)) is the payoff from the game multiplied by the number of P agents
with whom the R interacts (which on average is equal to η), while the wealth of a P agent
(yP ) is simply the payoff from the game since each P agent interacts only once with the R.

(yP , yR(η)) :=

{
(bNR, bηNR) if Φ∗(η) = E

(aPN
R, aRηN

R) if Φ∗(η) = U.
(28)

Since the cross class couple will be formed by one class agent’s matching with the other
class agent and thus the joint wealth of the cross class couple is

yc(η) := yP + yR(η). (29)

To capture the relationship between parental wealth and class mobility explained above, we
suppose that there is a ȳ called the baseline wealth barrier. We then suppose that inter-class
mobility occurs when cross-class couples have enough wealth to send their children into the
R class. Concretely, a cross-class couple gives birth to two R children, resulting in a net
increase of 1 R if yc(η) > ȳ and gives birth to two P children, resulting in a net increase of
1 C if yc(η) < ȳ. Cross-class couples with y = ȳ have 1 R and 1 P child, keeping η constant.
Formally, we consider the following dynamic for ηT , the ratio of the number of P agents to
the number of R agents:

1

1 + ηT+∆T︸ ︷︷ ︸
Future fraction

of R

=
1

1 + ηT︸ ︷︷ ︸
Current fraction

of R

+
1

1 + ηT

ηT
1 + ηT︸ ︷︷ ︸

Probability of forming
Cross-class couples

1

(1 + ηT )NR
sgn(yc(ηT )− ȳ)︸ ︷︷ ︸

increase/decrease in the fraction of R

(30)

In equation (30), 1
1+η

and η
1+η

are the fractions of the rich and poor agents in the whole
population consisting of the rich and poor agents, respectively. Thus, the future fraction
of R is given by the sum of the current fraction of R and a change in the fraction of R
multiplied by the frequency of forming cross-class couples. Here, the change is either an
increase in the R’s fraction (+ 1

(1+ηT )NR ) if the cross class wealth is greater than the wealth

barrier (yc(ηT ) > ȳ ) or a decrease in the R’s fraction (− 1
(1+ηT )NR ) if the cross class wealth
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is less than the wealth barrier (yc(ηT ) < ȳ ). By rearranging (30), we find that

ηT+∆T > ηT if and only if ȳ > yc(ηT ) (31)

thus the relative size of the poor population increases if and only if the cross class couple
wealth is less than the wealth barrier.

We use capital T to denote time in the dynamic in (30) to account for the difference in
the time scales between the dynamic governing η and the convention selection dynamic. As
explained earlier, we assume that T occurs on a much slower time scale than t (the time
for the convention selection dynamic), so that we only have to consider the stochastically
stable conventions. In other words, ∆T is sufficiently large so that the convention selection
dynamic is always at a stochastically stable convention, and that the stochastically stable
state is achieved within a ∆T increment. This simplification rules out possible intermediate
states where agents are playing different strategies. We leave the full formal analysis of the
coupled two time scale stochastic dynamical system to future work.

Using (27) and (29), we find that:

yc(ηT ) =

{
bNR + bηTN

R if η < η∗,∞(ρ, θ)

aRN
R + aPηTN

R if η ≥ η∗,∞(ρ, θ)
(32)

Combining (32) with the yc(ηT ) = ȳ condition for steady-state η implied by (31), and
abstracting from any discrete time issues, we get

Proposition 6. Suppose that ȳ
NR > 2b so that η > 1 is in steady-state. Then we have:

(i) There exists η∗∗(ȳ) ∈ R defined by yc(η
∗∗(ȳ)) = ȳ such that η∗∗ is stable with respect to

the dynamic in (30).
(ii) As ȳ increases, η∗∗(ȳ) increases.
(iii) When ȳ is sufficiently large, then convention U is stochastically stable.

Proof. This easily follows from setting yc(η) in equation (32) equal to ȳ.

Figure 10 shows the mechanics of Proposition 6 clearly. In Panel A, ȳ is low and thus
intersects yc(η) at a low η∗∗. Since this η∗∗ < η∗,∞, defined in equation (5), the corresponding
stochastically stable convention is the E convention. In Panel B, ȳ is high and intersects
yc(η) at a high η∗∗, which is greater than η∗,∞ and thus the U contract is stochastically
stable.

In our model, high barriers to mobility make the poor class larger, making a sufficient
fraction engaging in collective action less likely, and thus unequal contracts will persist for
longer. This occurs because large classes require many more deviant players to induce the
other side to change behavior, and unequal contracts make it harder for cross-class couples to
send their children into the wealthier class. Evidence for this correlation is abundant across
a wide variety of historical contexts: from pre-industrial populations (Borgerhoff Mulder
et al., 2009) to the modern day (Corak, 2012; Chetty et al., 2014) “Great Gatsby Curve”,
suggesting that it is general phenomenon unrelated to particular technological or political
settings, and therefore possibly illuminated by a relatively abstract evolutionary model such
as ours.
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Figure 10: Illustration of Proposition 6 . Panel A shows low ȳ, low η∗∗ and E as the
stochastically stable convention. Panel B shows high ȳ, high η∗∗ and U as the stochastically
stable convention. We assume that 2b < aR + aP .

The American South case also highlights the role of endogenous class sizes. Barriers to
intergenerational mobility facing non-white populations were very high, as skin color was an
obvious inherited obstacle to mobility. This restricted the size of the wealthy population,
and created a large population of poor workers, making sufficient social unrest difficult to
generate and enabling the segregation convention to persist for quite some time, despite
being very unequal.
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