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Marginal Cost Pricing Equilibria

Kwan Koo Yun®

I. Introduction

The Second welfare theorem in general equilibrium theory states that,
under convexity assumptions, a Pereto optimal allocation may be realized
as a competitive equilibrium after a suitable redistribution of income.
When individual convexity assumptions are violated, as in the case of the
increasing returns to scale, Guesnerie (1) formulated and proved a
modified version of the second welfare theorem. The theorem states that at
a Pareto optimal allocation, one may find a price vector such that, at each
consumer’s consumption vector, the first order conditions for expenditure
minimization in reaching the utility level of the consumption are satisfied
(with respects to the price vector) and at each producer’s production vec-
tor, the first order conditions for profit maximization are satisfied. Such a
state of an economy will be called a marginal cost pricing equilibrium in
this paper. Guesnerie's arguments critically depend upon replacing the
convexity assumptions by the convexity assumptions of certain approx-
imating cones to the sets under consideration. In this paper, we show that
such assumptions are largely unnecessary. In fact, our approach to the
problem is very different. We first establish some necessary conditions for a
Pareto optimal solution for maximizing n (real valued) functions under
general constraints. We also discuss constraint qualifications for such pro-
blems. This is the objective of the first part of the paper. In the second part
of the paper, we describe an economy in which non-convexities may be
present. The results in the first part are then applied to obtain
characterizations of a Pareto optimal allocation. In particular, it is shown
that a Pareto optimal allocation may be realized as a marginal cost pricing
equilibrium under very general conditions. Finally, some comments are
made on possible directions in which the analyses may be extended.
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II. Necessary Conditions for Pareto Optimality

We condiser the following problem of maximizing n functions under
constraints.

maximize f, f,, ..., (A)
se X

subject to g(s) < eand s € C.

Here, X is an open set in R?, C is a closed (in RF) subset of X and f: X -
R", g: X - R*are continuously differentiable. f, in the above problem
denotes the ith component function of f.

The feasible set F is defind by F = {s € X|g(s) <eandseC}. >, >,
>>denote weak, semi-strict, and strict vector inequalities respectively.

One may consider different concepts of solution to the above problem. s
€ F is a Pareto optimum if there does not exist s’ € F such that f(s') > f{(s).
s € Fis a weak Pareto optimum if there does not exist s’ € F such that (s)
>>1(s). Note that weak Pareto optimality is a more general concept than
Pareto optimality. If s € F is a Pareto optimum with respect to a
neighborhood of it in F, it is called a local Pareto optimum. A weak local
Pareto optimum is defined similarly.

In the description of necessary conditions for Pareto optimality that
follows, we need the concepts of conical approximation of a closed set at a
point in the set. A CRrisaconeif x € A impliesx-x € Aforall A >0. A
is a convex cone if x,y € A implies that a-x + f-y€ Aforall ai, g >0.
Given a set A in R", its (negative) polar cone A’ is defined by A? ={veR?"|
vw <0, forallw € A}. A%js a closed convex cone. Given two sets A, B in
R~ such that ADB, we have B° O A°. Also, A® =(A)°. Here, A denotes the
closure of A. Let B be the open unit ball in R" and C a closed set in R=.

Given x € C, we define:

Hypertangent cone (of C at x);

H(x) = { veR"| 4 € > Osuchthaty+twe Clorallye(x+ € -B) 0
C.wev+ €B,te (0, €)}.

Clark’s tangent cone;

T(x)= { veR"| for all {x} C C converging to x and { t,} C(0, c0)
decreasing to 0, I {v,} in R" converging to v such that x, + t-v,€C all i}.

curvilinear tangent cone;

T!/(x)={ v € R~ | there is a continuously differentiable function c: (0,
a) - C, for some a > 0 such that ¢(0) = x and DC(0) =v}. D stands for
the derivative.
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contingent cone;

K (x)={v €R"| there is a sequence {xi} C C converging to x and a se-
quence {¢,} C (0, %) decreasing to 0 such that (x,— x)/t, - v}.

Finally, when the smallest linear subspace of R® containing C— {x} is
R», we define:

cone of interior displacement ;

k(C, x)={ve R*[d € > Osuchthatx +t.w € Cforallwev+ € -Bandt
€ (0, £)}.

When there is a proper subspace of R* containing C — {x}, we rede-
fine B in the above definition as the open unit ball in the subspace. It
is immediate from their definitions that k (C, x) ¢ T/(x) and H(x) C
T(x)c K (x). Also, Tx) c K(x). H{(x) and K(C, x) are open cones and
T(x) is a closed convex cone. K (x) is a closed cone but need not be con-
vex. If H(x) is not empty, H(x) = interior of T (x) (see Clarke (2),
Theorem 2.4.8.). Since the closure of the interior of a convex body is equal
to the closure of the convex body and since T (x) is closed, we have the
following proposition.

Proposition 1: f H(x) # ¢ , T(x)°D TJ(x)°
Proof: T(x)*=int T(X)’ =int T(x)°=Hx)*D> TX(x)°. Q.E.D. Here, int
denotes the interior operation relative to usual topology in R", and the up-

per bar in second term denotes the closure.
Henceforth, we shall write T (x)’ as N (x).

Given SCR» we define:
k
CO) =( 2 5 1ke(L, 2, ,
l=
A=(A1, A2, . ., A )> 0ands, € S,alli} .

C(S) is different from the conical hull of S in that A is not allowed to be the
zero vector. C(S) is a convex cone which may or may not contain zero.
The following Lemmas are fundamental in what follows.

Lemma 1: Consider V={v,v,,...,v_} C R"and a closed convex cone
K in R~ If C(V) n K= ¢, then there exist a hyperplane through 0
separating C(V) and K such that C(V) is contained in an open half space.
Proof: Given € > 0 and the unit open ball B in R~ it is straightforward to
prove (using the convexity of B):

’ U C[v'l,vz',...,v;n]=C[U(vi+€-B)].
Y (v +¢-B) i

The second set is a convex cone containing C(V) in its interior. We now

show that for € > 0, small enough, the first set is disjoint from K. Suppose
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not. Then, there are v/ = (v} v/ ,...,v}) convergingtov=(v,, v, ,..., v )

and AY > 0 such that 2 )\V v; Y€ K, for each v. Since Kisa cone and

AV . > 0, we may assume ] | A | | = 1. Here,|| || denotes the Euclinean

norm. Thus, { A\’ } has a convergent subsequence and we may assume,

without loss of generality, that AY convergesto A > 0. Then, _;;l A Vi€
{=

K by the closedness of K and contradicts our hypothesis. We can now
apply a separation theorem to obtain a hyperplane through zero separa-

ting CQU(v; +¢ -B) } from K when € > 0 is small enough. Q.E.D.
Lemma 2: Consider a non-empty convex cone A in R" and V= {v,
Vy,..., Vot in R™ Suppose there does not exist a € A such that

v, a> 0, alli, then  one can find \> O such that £ v, A°.
i=1

Proof: Suppose C(V) N A® = ¢. Then, by Lemma 1, there exist a
hyperplane separating C(V) from A° such that C(V) is contained in an
open half space. Let b be a non-zero normal vector to the hyperplane poin-
ting inward to the half space containing V. Then be A%. Since A is con-
vex, A=A%=A® Thus, b€ A. Moreover, v,-b > 0, alli =1,2,.
since V is contained in an open half space. This means that, forallb’ close
enough to b, v- b’ >0, for all i. Thus, there exists a € A such thatv,.a >
0, alli. Thus a contradiction. Q.E.D.

Now we prove the main mathematical theorem in this paper.

Theorem 1: Suppose s is a weak local Pareto optimum for the problem
(A). Then, givne any convex set A C K (s), there exists (X, r) > 0 such that

n 2
. — . 0 -
i§1 A;- Df(s) k2=lrk ng(s)E A’andr_.g(s)= O, all k.

Here, Df(s) (resp. Dg,(s)) denotes the derivative of f, (resp. g,) at s.

Proof: Let I(s) be {k|g(s) = e} Since s is a weak local Pareto op-
timum, there does not exist c€ Kc(s) such that Df(s).c>0, all i and
—Dg,(s).c >0, all k € I(s). If there is such a ¢ in K (s), it is easy to show
that there is s’ arbitarily close to s such thats’ € C, fi(s') > fi(s), all 1 and
g(s’) < e, for each k € I(s), violating the local weak Pareto optimality of s
(This follws directly from the definition of the derivative and the definition
of K(s)). Now, let

V={Df(s) all i} U { - Dgys) k €1(s)}.

By Lemma 2, there are non negative numbers, {};}” land{rko} k €1(s),
=
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n
not all zero such that Z A,-Df(s) - E( S Dg,(s) € A°. By defining 1, = 0,
keSS

i=1

for k € I(s), we obtain the theorem. Q.E.D.

Corollary 1: Suppose s is a weak local Pareto optimum for the problem
(A). Then, there exists (A, 7) >0 such that > 2i- Df(s)— % r,: Dg,(s)
. . k-l

€ Ngs), and r, g, (s)=0, all k. =
Proof: T(s) is always a non-empty convex cone contained in K(s).
Q.E.D.

Corollary 2: If K (s) is convex at a weak local Pareto optimum for the
problem (A), the Lagrangian expression in Theorem 1 may be stated in
terms of K(s)°. Similarly, if T((s) (or k (C, s)) is non-empty, convex at a
weak local Pareto optimum, then the Lagrangian expression in Theorem 1
may be stated in terms of T (s)° (or k (C, s)%).

Guesnerie (1) uses the assumption that k(C, s) is nonempty, convex at a
Pareto optimum for his characterizations of the Pareto optimum.
Theorem 1 gives a nice perspective on this assumption. Roughly speaking,
theorems that are obtained in the second part of this paper follow from
Theorem 1. Corresponding to different choices of the set A in theorem 1,
we obtain similar but different results. The assumption that k(C, s) is non-
empty, convex at a Parto optimum is just one of many possible choices. In
this paper, we shall use the Clarke tangent cone because it is always a con-
vex subset of the contingent cone. Also, the Clarke tangent cone coincides
with other natural concepts of tangent cones when C is nice at s (e.g., when
C is (locally) convex at s or smooth).

V2

\

Vi

Ao

{Fig. 1]
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The convexity in the choice of A in Lemma 2 (and consequently, in
theorem 1) is indispensable. [Fig. 1] gives a counterexample, when A = {
a\ a2v}’ V = { vl' v2’ }'

We now present an alternative way of obtaining Corollary 1. We start
from the necessary conditions for a maximum of a mathematical program-
ming problem involving locally Lipschitz objective function. Then, we
convert the problem of maximizing objective function. Then, we convert
the problem of maximizing n functions under constraints into an
equivalent mathematical programming problem with a locally Lipschitz
objective function and obtain the results. Our ultimate goal here is to
discuss Clarke’s contributions to “constraint qualifications”, developed in
connection with mathematical programming and then to apply them to
the Pareto optimality case.

Let f be a locally Lipschitz real valued function defined on an open set U
in R". If 9; denotes the set of Lebesgue measure zero in U on which f is not
differentiable and S any set of measure zero, the generalized gradient of £,
at x, 9f(x), is defined by:

3 f(x) = co{lim Df(x,) | %, » x, x, €EQ, US}.

Here, co denotes the convex hull. The generalized gradient is not empty
since Df(x) is bounded (whenever it is defined) on a neighborhood of x by
the Lipschitz property of f.3f(x) reduces to Df(x) if f is continuously dif-
ferentiable at x. Also, it is easily verified that 3. (—f(x))= — 0d(x).

Instead of developing necessary conditions for Pareto optimum from
scratch, one can start from the following mathematical programming pro-
blem and necessary conditions for a solution of such a problem given by
Clarke.

mathematical programming

maximize f subject to g(s) < e and s C. (B)
s€X

The interpretations of the symbols are the same as in the problem (A)
except that; in the above problem, there is one real valued function f to
maximize and f is assumed to be only locally Lipschitz.

Clarke’s Theorem 1 (Clarke (2), Theorem 6.1.1.)

If s is a local maximum for the problem (B), there is

Q
(A1) € R {0} suchthat0 € =% - f(s) + %, 1, Dgy(s)+ Ne(s) and
i=
(rg(s)=0k=12,...,2

In the above, R 2*! dnotes the nonnegative orthant of R%*! and Dg,(s)
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denotes the derivative of g* at s.
We obsrve now that s is a weak local Pareto optimum of the problem (A)
if and only if s is a local maximum of the following problem.

maximize min { f, (s) — f; (s), f2(s) —f>(s),..., £ (s) — £, (s) } ©)
subject to g(s) <e and s€ C.

min denotes the minimum operation.

Let h(s) represent min {f(s)~f,(5), f,(s)—£(),..., £(s)—£(5)} and
h, = £(s) - £(3).
Then, h(s)= - max { —h(s), =hys),...,~h(s)}.

By a proposition of Clarke ((2), Proposition 2.3.12), dh(s)—co{ — dh(s) |i
= 1, 2,...,n}. Since h,is continuously differentiable, :3h(s) =Df(s) and
dh(s)c {zu; .Di(s)|#; > 0,i=1,2,..., nand Zy; =1}. These observa-
tions together with Clarke’s Theorem 1 prove Corollary 1.

We have already observed that s is a weak local Pareto optimum of the
problem (A) if and only if it is a local maximum of the problem (C). We
now observe that s is a local Pareto optimum of the problem (A) if and only
if it is a local maximum of the following n problems simultaneously.

Foreachi=1, 2,..., n;

maximize f,
seX

subject to

£ (s)> £,/ (s), all i'=i,

g(s) < eands e C.

If A =0 in Corollary 1, the Lagrangian expression is not very useful. So,
now we seek conditions undr which A in Corollary 1 may be chosen as a
non-zero vector. For the mathematical programming problem (B), Clarke
(3) introduced the calmness condition for such a purpose. Let F_ denote
the feasible set in the problem (B) corresponding to the given vector e. We
now difine function ¢ : R? - [0, o] by¢ (e)= sseulee (s). ¢ (e)is defined
to be —oo if F,= ¢ . Problem (B) is defined to be calm if ¢ (e) is finite and

hg‘]j%p (#(e’)—¢ (e))/lle'||[<e=. Calmness conditions are satisfied by most

of the familiar constraints qualifications.
We now state:

Clarke’s Theorem 2 (Clarke (3))

Suppose that the problem (B) is calm (with respect to the given e), then
A in the statement of the Clarke’s Theorem 1 may be chosen to be positive.
Moreover, given a neighborhood of E of e on which ¢ is finite, the problem
(B) is calm with respect to almost all (in Lebesgue sence) e’ in E.

(D)
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In order to use the above theorem in the context of a weak local Pareto
optimum, we have to localize the concept of calmness. We shall say that
the problem (B) is locally calm ats€EF, if one may find a closed §-ball
(around zero), Fs ,6 >0 such that the problem (B) is calm with respect to
the feasible set; _

F s(e)={s'€ X|s'é s+B,,g(s')< eands’e C}.

Suppose § is a weak local Pareto optimum for the problem (A) and thus
is a local maximum for the problem (C) and suppose problem (C) is locally
calm at s. Then, the arguments in the derivation of Theorem 1 make it
clear that one may choose A > 0 in the Lagrangian expression in Theorem
1. Suppose now that s is a local Pareto optimum and thus is a local max-
imum for each of the n problems in (D). If each of the problems is locally
calm at s, we may choose for each i, (A, 1) > 0, 7\ > 0 such that E )\

J‘
Df, (s)+ E rK Dg, (s) € N, (s) and rk- 8. (s) =0, for all k. If we choose

Ni= 3 A /n,j=1,2,...,nandr, = :%ré’/n, then by the convexity of n.(3),

T )\ Df(s)+ E r,Dg,(5)e N 3). Also, . gis)=0 for all k. Thus, we
Jj=1
have the followmg proposition.

Proposition 2: If § is a weak local Pareto optimum for the problem (A)
and problem (C) is locally calm at 5, A in the statement of Corollary 1
may be chosen as a non-zero vector. If § is a local Pareto optimum and each
of the problems in (D) is locally calm at §, X\ may be chosen as a strictly
positive vector.

Calmness condition is interesting not only for its generality but also it
leads to a proposition that most non-linear programming problems are
calm. It would be desirable if a similar proposition may be proven with
respect to maximizing n functions. Since the problems in (C) or (D) involve
a local Pareto optimum s in the statement of the problem, “‘genericity” of
the calmness condition does not follow in any obvious way in the case of
maximizing n functions. We hope to answer this question in a future study.

ITI. Weak Local Pareto Optimu}n in a Non-Convex Economy
and Marginal Cost Pricing Equilibrium

We now describe an economy with production where consumers’
preferred sets or producers’ productin sets may not be convex. We
specify the conditions under which the attainable set of the economy
is compact. This, together with the continuity of proferences,
guarantees the existence of a weak Pareto optimal allocation. We
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then characterize the weak Pareto optimal allocation using
Theorem 1. A result, sharper than Guesnerie’s, is obtained under
weaker conditions as a consequence.

X denotes the consumption set of consumeri=1,2,..., n. Y, is the pro-
duction set of producer j=1,2,..., m. There are & commodities. X,, YJ.
are subsets of R®for all i, j. The set of allocations, C, is defined by
C=X'xX?x .. .X XY XY,X...xY_e€&R? is the initial endowment
for the economy. s€C is a feastble allocation if g(s) < e, where g(s) = ‘?xi—
? y;- The set of feasible allocations is denoted by F. u;: C » R is the
utility function of consumer i. Let 7: C » X, denote the projection map of
C onto X.. If u, depends upon x( =7 (s)) only, then u; naturally induces a
function §,: X, - R defined by U(x,)-= u(s), for anys € 7 ! (x,). We shall
use the following assumptions on the economy:

Assumption 1: (i) X, is closed for each i.
Y, is closed for each j.

(i) X, C R:for eachi.
(iii) (3 Y;) O —R} (free disposability)
) . oy ey
(iv) A(Z Yj) NA(-ZY))= {0} (irreversibility) ,
J J

Assumption 2: u;: C- R is continuously differentiable, for each i. D,
ui(s) > 0, for all i (weak monotonicity). l
In Assumption 1, A (‘zj: ¥;) denotes the asymptotic cone of ? Y,. As usual,
u, is defined to be continuously differentiable on a closed set C if it may be
extended to a continuously differentiable function on a neighborhood of
C. D, u, (s) denotes the derivative of u, with respect to x,.
Prop&sition 2: Under Assumtions 1 and 2, there exists a Pareto optimal
allocation.
Proof: Under Assumpion 1, the feasible set of the economy, F, is compact
(see Brown and Heal (4: Lemma 3)). Thus, the problem of maximizing
JZ, u(s) subject to s € F has a solution. This solution is easily seen to be
Pareto optimal. Q.E.D.
Brown and Heal uses a theorem of Hurwicz and Reiter (5), to show the
compactness of F under Assumption 1. Hurwicz and Reiter defines the
feasible set as {s € c|g(s) = e}. But this definition of the feasible set is
equivalent to our definition under the free disposability assumption
(Assumption 1-(iii)). ’
Now, consider the following problem.

maximize u;, Uz, ..., U,

subject to g(s) < e and s€ C. (E)
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Suppose § = (X, X,,...,X_,¥,,....¥,) is a weak local Pareto optimum of
the above problem. By applying Corollary 1 and by observing that

N (s)= N, B)XN (x)x - XN (x )X N_(y)x - xN(y)
(this follows from the definition of the Clarke tangent cone and the defini-
tion of C), we obtain:

there exists (X, r) € R***— {0} such that

Ei A, th u(s)—re€ Nx, (x) forh=1,2,...,n,

1

(*) 2N D, u; (s)+r€ Ny () for f=1,2,..., m,
andr - g (5)=0,k=1,2,...,%8

These necessary conditions are quite general. We now specialize the
situation to obtain more intuitive conditions:

Theorem 2: Assume Al-— (i) and A2 and assume that u, depends upon
x, only. If s=(x, x,,..., X, y,,..., y,) is a weak local Pareto optimum
such that x, € int X, for each i, then there are A >> 0 and r > 0 such that
A, -Du (x) =rfori=1,2,...,n

rENY. (?j)for_j:l’ 2,...,m, and
J
Ty 8k (s)=0,k=1,2,...,%

Proof: If u, depends only on x, then D, u, (5)=0 wheneveri #+ h. Then, we
may use DU, (x,) instead of D, u; (s) for notational simplicity. If X, € int X,
N, (%) = {0} Thus, the expression in Theorem 2 follow from (*). We
know (X, 1) # 0. If r > 0 then DU|(X;) > 0 implies A; > 0, alli. If x; > 0
for some i, again Duj(x,) > 0 implies r > 0 and thus A >>0. Q.E.D.

We now formulate a theorem that may be considered a counterpart of
the second welfare theorem in a non-convex economy. Given a utility
allocation u = (u,, u,, ..., u), we define:

Xi(w) =[x €X; lu(x)>w]. i=1,2,...,n
C(u)=X1 (ul)X Xz(u2)X e X Xn(un)x Yl X .. X Yn_
X, (u;), C(u) are closed sets.

If s is a weak local Pareto optimum, it is east to see that § is a weak local
Pareto optimum with respect to the following problem:

maximize U, Uz, ..., Uy
subject to g(s) <e and s € C(u), where (F)

u= (ul (D’ UQ(?)’ ceey un(?))
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Theorem 3: Assume Al — (i) and A2 and assume that u, depends upon x,
only. If§ =(X,X,,...,X_,y,,.--,¥,) is a weak local Pareto optimum and if,
for each i, there is v € T )(x) such that Du, (x,). v > 0, then there exists
r> Osuch that ~re N ( x;)alli and re Ny(y). all j and r,. g, (s) =
0,k = L. 0 K
Proof: Necessary conditions for Pareto optimum s for problem F are:
there exists (A, r) € R**? — {0} such that A. D@ (x) -1 € 1\x (@) ( X;)
i=1,2,. anN(y)J—l2 mandr g(8) =0,k= 12
We show -Di (x) € Nx'( )(x) for alli. Takeanyve T, . ) (x,). By the
definition of the Clarke tangent cone, for each {x¥} C X (@) converging to
%,and each t¥ decreasing to 0, there is a sequence {V’} converging to v andx”
+tV-vwW€E X, (u,), allv. Taking a constant sequence X’=X,, all v, we have

T (X . vY) - (X))

tV
W (% + V) = H(X) Ulx + W) U (x, + V)
+ =0
tV tV

(Recall T is defined at X, + t¥- v for all large enough », by the continuous
differentiability of W)). By the continuous differentiability of U,, given any
€ > 0 and for all » large enough,

8 (% + 9 v) =, (x, + 7 v) = D (x;) (" (W=v))I
<€ |tV (vw—v)|. This implies that

u (x; +tV V) —u (X + 2. v)

> Qaspyp-> o
tv

and we have Duj(x)-v > 0. thus, Dai(x) € Nx_(ﬁ-‘)()zi).
1

If r = 0, there exists i such that A, > 0, and }, Du(x) Ny @, )(x) This
implies that T, () (X,) is contained in a hyperspace normal to D§ (%) and
contradicts an assumptxon in Theorem 3. Q.E.D.

In the above theorem, r was chosen as a semi-strictly positive vector
rather than simply a non-zero vector. This is the consequence of our
assumptions of free disposability and Du(x) > 0. If we remove these
assumptions, the theorem may be stated in terms of r * 0.

It would be instructive to compare Theorem 1 with the theorems in
Guesnerie (1) in detail. This, in fact, is possible through the concepts and
the results introduced in the first part of this paper. Such comparisons
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woul involve more detailed discussion of the Guesnerie’s model than seems
desirable here, however, will be postponed for a future occasion.

In the first part of this paper, we considered the calmness condition in
the context of a mathematical programming. One may consider a class of
mathematical programming problems in which the data enter in more
general ways and ask whether a theorem such as Clarke’s Theorem 2 may
be proven in such situations. One may also consider the formulation of the
counterpart of the calmness condition in the problem of maximizing n
functions and its possible applications to economics.

The results in the second part of this paper may be extended in several
directions. It is not difficult to show that continuous differentiability of utili-
ty functions may be replaced by local Lipschitz continuity to obtain
analogous results. Also, one may introduce externalities. The constraint set
C was given in the above as a product set of consumption and production
sets. One may consider a more general set and still obtain useful necssary
conditions for a Pareto optimum. It is very likely that the existence of tax-
subsidy equilibrium supporting a Pareto optimum allocation may be deriv-
ed from such necessary conditions in an environment more general than
the one considered by Osana (6).
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