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I. Introduction

Asymptotic standard errors are used in practice to assess the precision or
variability of various parameter estimates of a linear structural
econometric model (SEM). Recently, “bootstrapping™ has been put for-
ward as an alternative method of evaluating the variability of an estimator;
see Efron (1979, 1982), Freedman (1981), Efron and Gong (1983), and
references therein.

The asymptotics of bootstrapping a linear SEM is discussed by Freed-
man (1983). He shows that the bootstrap gives a good approximation to the
sampling distribution of two-stage least-squares (2SLS) estimates in sta-
tionary linear models. Some empirical results of bootstraping two and
three-stage least squares (3SLS) estimates of a linear static model are
presented in Peters (1981) and Freedman and Peters (1984a). They find
the large-sample standard errors of 2SLS and 3SLS estimates of the
Berndt-Wood (1975) model of the energy demand performing well. The
model is static and the so-called restricted reduced form residuals (based
on the 3SLS estimates of the model) are used in their bootstrapping.

In this paper we apply the bootstrap method to two-stage least squares
estimates of a widely-known econometric model — Klein’s (1950) Model
I — and examine how large-sample standard errors of 2SLS estimates per-
form in a dynamic econometric model. We also consider two alternative sets
of residuals in construction of the bootstrap data. One is the set of the
restricted reduced form (RRF) residuals based on the structural parameter
estimates. The other is the set of the least-squares residuals from the
reduced-form equations, often referred to as the unrestricted reduced
form (URF) residuals. Since the URF residuals are orthogonal to the
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predetermined variables while the RRF residuals are not, the former
residuals preserve a key stochastic assumption of a SEM that exogenous
variables are uncorrelated with the disturbance term.

The plan of the paper is as follows. In section 2 we outline the bootstrap
in the context of estimating a linear dynamic SEM by 2SLS. Section 3
reports on bootstrapping Klein’s Model I, and compares the results based
on the URF and RRF residuals. Section 4 contains some concluding
remarks.

2. Bootstrapping an Econometric Model

The idea of bootstrapping is to approximate the unknown distribution
of the disturbance term by the empirical distribution of a set of residuals,
construct the bootstrap data by repeated sampling from the latter distribu-
tion, and assess the variability in an estimate by Monte Carlo simulation.
We describe the idea in the context of a linear dynamic SEM.

Consider a model of the form

14 ’ r
Y. I+z A+y,_,C=u =1,2,...T (1)

to

wherer, A, and C are matrices of unknown structural coefficients to be
estimated, y is a GX1 vector of current endogenous variables, z is a X 1
vector of ex~otgenous variables, and u is a G X 1 vector of structural distur-
bances, all at time t. A priori restrictions exist onr, A, and C so that all G
structural equations are identified, and |r| # 0. The following assumptions
are made about structural disturbances:

E}iﬁQ I5:13,=[Eforts

f~E 0 for t#s

where ¥ is a G X G contemporaneous covariance matrix.
The reduced form representation of the SEM in (1) is
! ' ’ '

Ye=Ze ity Mo ¥y, 2)
where II,= —Ar~'and I[1,= - Cr~! are matrices of reduced-form coeffi-
cients and v’ = gt'r‘l is a G X 1 vector of reduced-form disturbances.
Clearly,

and

{ (r*) zri= for t=s
~tas 0 for t#s.
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Given the data on (); ! ~zf,')_ fort = 1,2,..., T and y. the structural
parameters in (1) can be estimated by 2SLS or other method. Structural
disturbances may then be estimated by

~

WTY r+zy Aty G t=1,2, ..... , T (3)

where;, K and E are the 25LS estimates ofr, A. and C, respectively. The
estimates of the RF disturbances in (2) are obtained from

L

'~ v
e —E0 Zt—ln 2

~
Ya

r-t, t=1,2,...., T (4)

J
x.
where {j,= — A ™-land fl, =—Cp-1provided that |T| 0. These residuals
are called the restricted reduced-form (RRF) residuals in the sense that
they are obtained from the coefficient estimates satisfying the identifica-
tion restrictions on the structural coefficients. Note that the RRF residuals
are not necessarily orthogonal to exogenous variables although they have a
zero mean if all structural equations contain intercept terms; see Park
(1982). Freedman and Peters (1984a) have used the RRF residuals based
on the 3SLS estimates of structural coefficients in bootstrapping the
Berndt-Wood model.

Now we consider a model like (1) in which all parameters are known; the
structural coefficients are equal to T, A, and C, and the reduced-form
disturbances are mdependent and have a common distribution F. The
common distribution F is the empirical distribution of the RRF residuals
with the probability mass of 1/T assigned to each ofz, t=1,2,..., T. Us-
ing this model, we obtain the bootstrap data by drawing the reduced-form
disturbances v* from the distribution F and generating the data on the en-
dogenous variables recursively fort =1, 2,..., T, as

Yo =g Wyt T, 4V (5)
The data on the exogenous variables are kept fixed, yo Yo and the
bootstrap data are denoted by asterlks
Using the bootstrap data {(y*, z ) t=1,..., T}, wecan obtain the 2SLS
estimates (r* A*, C*) of structural coefficients (r B, C) The idea of
bootstrapping is to take the distribution of t* ~ T, A* —A, c* - C) as
an approximation to the distribution of (F -rA-AC- C). Often the
derivation of the former distribution is analytically intractable. Since (T, A,

C) is in fact known, the distribution of (T*~T, A*~ A, C* — C) can be assess-
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ed by computer simulation of bootstrapping: we generate bootstrap samples
many times by replicating random drawings from F and infer about the
sampling properties of the original 2SLS estimate by examining the em-
pirical distribution of the bootstrap estimates.

An alternative method can be used for generating the bootstrap data.
Let ﬁ, and ﬁi be the least squares estimates of II, and II,, respectively, of
the reduced form equations in (2).

The least-squares residuals given by
Q’t=Z’t ‘Z‘:t II,——Z;_I 0, ¢=1,2,...., T (6)

are often referred to as the unrestricted reduced-form (URF) residuals.
They are unrestricted in the sense that the identifying restrictions on the
structural parameters in (1) are not taken into account in obtaining fll and
ﬁz. Unlike the RRF in (4), however, the URF residuals are orthogonal to
the predetermined variables and have zero means when the reduced-form
equations have intercept terms. It appears, that the URF residuals resem-
ble the stochastic structure imposed on the disturbances more closely than
the RRF.

The bootstrap data can be generated from the distribution F of the URF
residuals with the mass of 1/7T assigned to each of the URF residuals, S’t: t

=1, 2 ", T. Drawing a reduced-form disturbance vector y*at random
‘rom F and using it in place of v v* in (5), we construct the bootstrap data and
obtain the 2SLS estimates of the ‘known” structural coefficients, T, A, and

~

C.

3. Bootstrapping Klein's Model I

Klein's Model I as discussed in Theil (1971, pp. 432-458) is a dynamic
simultaneous equation system consisting of the following six linear struc-
tural equations:

C,=ao +ay P +aa Py +ay (W, + W) +e

L =805 P, +8, P _; +hs Ki_1 +¢,

W=yo +7: X t712 Xy t7s (t—1931) +e

X =C, +T, +G,

P=X —W,—T,

K=K._; +1. o

t
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for t=1921, 1922, ..., 1941. Endogenous variables are

C: consumption

P: profits

W wage bill paid by the private sector

I: net investment

K: capital stock

X: total production of the private sector
and exogenous variables are

t: time

T: taxes

W': government wage bill

G: government nonwage bill

1: constant dummy
The annual data set for 1921-41 taken from Theil (1971, p. 456) yields the
2SLS estimates of the structural parameters and their large-sample stan-
dard errors as presented in columns (1) and (2) of Table 1.

Given the 2SL.S estimates of the structural coefficients in eq. (7), we can
compute the RRF residuals from the model and data. On the other hand,
we can compute the URF residuals by regressing each of the six en-
dogenous variables on all the predetermined variables of the model. Both
URF and RRF residuals have zero means. The URF residuals, however,
have smaller .standard deviations than the RRF residuals because the
former are the least squares residuals of reduced-form equations. The ratio
of the standard deviaton of the RRF residuals to that of the URF residuals
varies in Klein’s data from 1.04 for the variable ranges I (net investment)to
1.20 for W (the private sector wage bill).

3.1. Bootstrapping with the URF Residuals

A bootstrap sample is constructed by obtaining pseudo — data on
endogenous variables recursively using
b ~ Kl

Y. —z 1'[1+y H2+v ,

~

8
t=1921, 1922, ..... , 1941. (8)

The coefficient matrices 11, and 11, are the least-squares estimates of the
reduced-form coefficients in eq. (2) and A is a random vector drawn from

the empirical distribution F of the URF readuals The data on exogenous
variables are kept fixed. The 2SLS estimates of “known” structural coeffi-
cients — as given in the first column of Table 1 — and their standard errors
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can then be obtained from the bootstrap sample.

This procedure may be repeated a number of times. On each replication
a new set of residual vectors are drawn, a new sample is constructed, and
the 2SLS estimates and their asymptotic standard errors are computed.
Columns (3) and (4) of Table 1 present, for each structural coefficient of
the model in column (1), the mean and standard deviation of 25LS estimates
computed from 400 bootstrap samples. For example, for the parameter a
with the original 2SLS estimate of 0.0173, the bootstrap has yielded the
mean and standard deviation of 0.0605 and 0.1453, respectively.

Thedifference between the mean and the original 2SLS estimate in this
example of «, seems to be appreciable. A statistically significant dif-
ference between the two would indicate a small-sample bias in the 2SLS
estimate. If we denote the 2SLS estimate of a coefficient in column (1) by @,
and its corresponding mean and standard deviation in columns (3) and (4)
by g* and sg ., respectively, then the ratio

t=T%0 " —0)/s. |

where T = 400, may be computed to check for the bias in the 2SLS estimate.
Thus, for @, we obtain the t value of 20 (.0605—.0173)/.1453=5.95 on
399 degrees of freedom. The t value indicates at the 0.01 level of
significance that the 2SLS estimate is significantly biased. [Unless other-
wise noted, the level of significance used in this paper is 0.01.] The t ratios
are presented in the fifth column of Table 1. The 2SLS estimate has a
statistically significant bias in almost all cases.

The sample standard deviation in the fourth column of Table 1 gives the
bootstrap estimate of the variability or precision of the 2SLS estimate in col-
umn (1) and provides an alternative to the large-sample standard error in
column (2).

For example, the standard deviation of .1453 measures the variability of
the 2SLS estimates of ¢, in the simulation and is a bootstrap estimate of
the standard deviation of the original 2SLS estimate .0173. On the other
hand, the conventional asymptotics yields the standard error of .1180, and
suggest less variability of the 2SLS estimate than the bootstrap.

However, the large-sample standard error in column (2) is smaller than the
standard deviation in column (4) only in 4 out of 12 cases, and the ratio of
the former to the latter ranges from .75 fora, to 1.28 for §,.

A measure of the variability of large-sample standard errors is also pro-
vided by the bootstrap samples. Let s, stand for the large-sample standard
error of the 25L.S estimate of a given structural coefficient computed from
the i-th bootstrap sample data. The variability of the large-sample stan-
dard errors can be measured by the root mean squares (RMS):
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RMS = (T s /400)%.

For example, RMS is .1326 fora, as presented in column (6). This may be
interpreted as the large-sample standard error in a typical sample that may
be compared to the standard deviation of .1453 in the fourth column, and
suggests that the large-sample standard error underestimates the real
variability by a factor of about 0.09.

Comparing columns (4) and (6) in Table 1, we find that the large-
sample standard error tends to overstate the variability of the 2SLS
estimates in many cases. Column (7) gives the ratio of the RMS in column
(6) to the standard deviation in column (4). The ratio ranges in value from
0.91 for a, to 1.57 for ., and the ratio is greater than one in all but two
cases. The conventional asymptotic standard error seems to provide a
reasonably good measure of the variability in 2SLS estimates.

3.2. Bootstrapping with the RRF Residuals

We now turn to bootstrapping with the RRF residuals. Table 2 presents
for each structural coefficient of the model the mean and standard devia-
tion of coefficient estimates computed from 400 bootstrap sample using the
RRF residuals. The mean in column (3) reveals the bias in the 2SLS
estimates while the standard deviation in column (4) measures the
variability of the 2S5LS estimates.

The t ratio in the fifth column indicates that the mean in column (3) is
significantly different from the parameter value in column (1) in 5 out of
12 cases. It is seen, therefore, that whether the URF or RRF residuals are
used in bootstrapping ,the mean of the bootstrap coefficient estimates can
be substantially different from the original 2SLS coefficient. Such a strong
bias in 2SLS estimate may be due to the presence of lagged endogenous
variables in the structural equations.

The standard deviation in column (4) of Table 2 is smaller than the
large-sample standard error in column (2)in 8 out of 12 cases. The ratio of
the one to the latter ranges from .63 for g, to 1.25 for ¢, indicating that
the asymptotic standard error may not be too overly optimistic or cautious
in assessing the precision of the 2SLS estimate. The RMS of large-sample
standard errors reported in column (6) of Table 2 is seen to be very close to
the standard deviation in column (4) in almost all cases. The ratio of the
entries in columns (6) to (4) as presented in column (7) ranges from 0.89
for a, to 1.15 for g, The conventional large-sample standard error ap-
pears to be doing well. This is in agreement with the result obtained by
Freedman and Peters (1984a) for 2SLS. They used, however, the RRF
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residuals based on the 3SLS estimates of structural coefficients in construc-
ting bootstrap samples.

4. Concluding Remarks

In this paper the variability or precision of the asymptotic standard
error of the 2SLS estimates has been examined by bootstrapping a widely
known dynamic SEM. Although the bootstrap results could be different
depending on whether URF or RRF residuals are used, the differences are
not found to be of practical significance.

The main finding from the bootstrap experiments is that the conven-
tional asymptotic standard error performs well in assessing the real
variability of the 2SLS estimates. One problem, both for the asymptotic
formula and for the bootstrap, is that the residuals may tend to be smaller
than the true disturbances due to the effect of fitting. Some inflation of the
residuals may be appropriate to compensate for the deflation of the
residuals. There is no generally valid rule. More experience with bootstrap-
ping is desirable.
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