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FINANCIAL FORECASTING THROUGH DATA MINING:
A COMPARATIVE EVALUATION OF PROBABILISTIC NEURAL
NETWORKS AND OTHER MODELS

SE-HAK CHUN* -STEVEN H. KIM**

In recent years, neural networks have been applied extensively to the task of
predicting  financial variables. Even among neural network techniques,
backpropagation algorithm has been the most popular methodology. However, the
advantages of other learning techniques such as the swift response of the
probabilistic neural network (PNN) suggests the desirability of adapting other
models to the predictive function. Unfortunately, the conventional architecture for
probabilistic neural networks yields only a bipolar output corresponding to Yes
or No; Up or Down.

This limitation may be circumvented in part by using a graded forecast of
multiple  discrete values. More specifically, the approach involves a bipolar
architecture comprising an array of elementary PNNs. This paper explores a number
of interrelated topics: (1) presentation of a new architecture for graded forecasting
using an arrayed probabilistic neural network (APN); (2) use of a “mistake chart”
to compare the accuracy of learning systems against default performance based on a
constant prediction;, and (3) evaluation of several backpropagation models against a
recursive neural network (RNN) as well as PNN, APN, and case based reasoning.
These concepts are investigated against the backdrop of a practical application
involving the prediction of a stock market index.
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I. PURPOSE

A systematic approach to knowledge discovery for stock market prediction
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must be able to accommodate disparate types of information. To this end, a
battery of techniques from the field of data mining may be hamessed to the
predictive task. A key advantage of a multistrategy approach to discovery and
forecasting lies in the ability to merge data available in diverse formats.

To an increasing extent over the past decade, software learning methods
including neural networks have been used for prediction in financial markets and
other areas. By far the most popular type of neural network has been
backpropagation. However, the advantages of other learning techniques such as
the swift response of the probabilistic neural network (PNN) suggests the
desirability of adapting other models to the predictive function. Unfortunately, the
conventional architecture for probabilistic neural networks yields only a bipolar
output corresponding to Yes or No; Up or Down.

This limitation may be circumvented in part by using a graded forecast of
multiple discrete values. More specifically, the approach involves a bipolar
architecture comprising an array of eclementary PNNs. This paper explores a
number of interrelated topics: (1) presentation of a new architecture for graded
forecasting using an arrayed probabilistic neural network (APN); (2) use of a
“mistake chart” to compare the accuracy of learning systems against default
performance based on a constant prediction; and (3) evaluation of several
backpropagation models against a recursive neural network (RNN) as well as
PNN, APN, and case based reasoning. These concepts are investigated against
the backdrop of a practical application involving the prediction of a stock
market index.

II. BACKGROUND

A versatile approach to self-organization lies in neural networks (Anderson and
Rosenfeld, 1988; Grossberg, 1976; Hebb, 1949; Hopfield, 1982; Kohonen, 1984;
Rosenblatt, 1962; Rumelhart et al,, 1986). Neural networks are characterized by
learning capability, the ability to improve performance over time. A closely
related feature is that of generalization, relating to the recognition of new objects
which are similar but not identical to previous ones. An additional characteristic
relates to graceful degradation: the network fails gradually rather than
catastrophically when it suffers partial damage.

Backpropagation neural network. The neural network methodology has been
applied extensively to solve practical problems following the publication of the
backpropagation algorithm for the multilayer perceptron (Rumelhart, 1986). The
algorithm was developed for the perceptron model, a simple structure to simulate
a neuron (Rosenblatt, 1957). Today the backpropagation network (BPN) is the
most widely used neural algorithm in science, engineering, finance and other
fields.

The general structure of a multilayer perceptron plus the backpropagation
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algorithm is depicted in Figure 1. The data entering an input node is multiplied
by a set of weights. All such weighted inputs are summed at each node of next
layer. The summed value enters an activation function which depends on the
learning algorithm. The output of the activation function then becomes the raw
input for a node in next layer. This process is called feed-forward.

[Figure 1] General structure of the multilayer perceptron using the backpro-
pagation algorithm.
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The output of nodes in the last layer may differ from the target value
because the weights are initialized randomly. The error between the target value
and the calculated value can be adjusted by varying the weights. The weights
are adjusted by a delta rule derived from a cost function which depends on the
error. This process propagates backward from the output layer to the input layer.
The backpropagation algorithm is summarized in Figure 2.

The BPN has several disadvantages. Since BPN relies on a gradient descent
method, it may slip into a local minimum. In that case the optimum model may
be unattainable without using some other appropriate technique. Taking a long
time to learn a model is also one of the disadvantages of BPN.

Probabilistic neural network., The probabilistic neural network (PNN) operates on
data belonging to a specified number of output categories. Unlike backpropagation
networks, a PNN requires only a single presentation of each pattern. The
pseudocode for training and utilizing the model is listed in Figure 3.
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[Figure 2] The backpropagation algorithm.
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5. Evaluate the output of output nodes:
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10. Evaluate the cost function. Learning is continued until £, is under the
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A PNN utilizes an exponential function in lieu of the sigmoid activation
function often used in neural networks, With this substitution, a PNN can
identify nonlinear decision boundaries which approach the Bayes optimal
(Sprecht, 1990). PNN appears to outperform backpropagation in discovering local
patterns in a time series, especially in the absence of noise.

Recurrent neural network. The recurrent neural network (RNN) consists of two
main parts. The forward component has a feedforward data flow pattern which
is trained using the backpropagation algorithm. The other module of an RNN is
the recurrent component. This module involves a context vector which stores a
single period delay of the state of the hidden layer. In particular, the activations
in the cells of the hidden layer at time ¢ - 1 are copied into the context vector
which re-supplies the hidden layer at time ¢.
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[Figure 3] Pseudocode for training and testing a probabilistic neural network. All
wording after the double slash (“//”) represents explanatory remarks.

Procedure TrainPNN{
preprocess data by normalizing.
// or standardize data to simplify choice of s (smoothness parameter)
// in EmployPNN procedure.
read data from preprocessed training file.
for each pattern X,
create a separate pattern unit
and set the weight vector W, equal to X.
connect the pattern unit’s output to the appropriate
(positive or negative) summation unit.

J

Procedure TestPNN{
preprocess test data by normalizing; // or by standardizing, as in TrainPNN.
read test data;
for each test pattern,
for each unit in the pattern layer. /[ 4, = || W,— X ||.
get the distance &; between X and the weight vector W, /[ d; =} W;— X |
transform each distance ¢; by proper exponentiation; // exp(- d,%/(2* §%)).
sum the distances 4;
connect each pattern umit’s output to its corresponding (positive or negative)
multiply the output from negative summation unit by C=- (s, /n_,) *
(hoy L )/ (hyLy)
// subscript %=1 for positive cases and -1 for negative cases.
/I h, = prior probability of £; L,= loss due to action £ n,
= observation of £
J if prior probabilities are unknown, choose C = 1.
sum up values from the summation units;
if sum is positive, return 1.
otherwise, return -1.

The computational consequence is a recurrent, fully connected flow of data
among all the nodes in the hidden layer. A recurrent network may therefore
respond differently to the same input at different times, depending on the prior
state of the hidden layer.

Case based reasoning and composite neighbors. Conventional methods of
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prediction based on discrete logic usually seek the single best instance, or a
weighted combination of a small number of neighbors in the observational space.
For instance, the rule of thumb in case based reasoning (CBR) is to seek the
nearest neighbor to a target case. In an analogous way, certain algorithms in
neural networks seek a fixed number of the closest neighbors, this approach is
illustrated by the use of self-organizing maps for pattern recognition tasks
(Kohonen, 1984).

An intelligent learning algorithm should therefore take account of a “virtual”
or composite neighbor whose parameters are defined by some weighted
combination of actual neighbors in the case base. In this way, the algorithm can
utilize the knowledge reflected in a larger subset of the case base than the
immediate collection of proximal neighbors. The procedure for case reasoning
using composite neighbors is presented in Figure 4.

[Figure 4] Predictive procedure through case reasoning using composite neighbors.

Step 1. Begin with current case x(t).
Step 2. Seek the J neighboring cases x(t) in the past which are closest to
x(¢) according to the distance function :
di=d[x(¢), x(1)]
Step 3. Compute the sum of weights :
J
dror= ZJI d;
Step 4. Determine the relative weight of ;* neighbor :
d; '
T0T ]
Step 5. Find the successor x(t; +1)of each casex(z,) in the set of
neighbors.
Step 6. Calculate the forecast for ¢+ 1 as the weighted sum of successors:
J
x(t+1)= le,»x(t,- +1)

=1 —

The key to the composite approach lies in the determination of the most
effective set of weights to use in order to construct the virtual neighbor.
Learning the optimal set of weights is the primary challenge, and the particular
values of the weights may well evolve over time as the experience base
expands. A promising way to address this task lies in simulated annealing: the
weights for constructing the composite neighbor may be perturbed randomly and
the advantageous trends pursued, as in the quest for effective parameters in a
neural network algorithm.
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1. METHODOLOGY

A probabilistic neural network offers swift response, but presents a liability
due to its limited output which corresponds to only two states. This limitation
may be partly overcome by constructing a battery of probabilistic neural
networks. The composite configuration may then be hamessed to provide a
graded forecast from the set of bipolar outputs generated by the component
networks. The architecture for the arrayed probabilistic network (APN) is
presented in Figure 5.

[Figure 5] An arrayed probabilistic neural network (APN). In the APN, the
Decision Layer combines the outputs from the Array layer and
generates an output. In the current study the Decision layer relies on a
positive output, if any, from the elementary PNN at the highest Level
in the Array layer. For instance, if Level 3 is the highest level
producing an output of “1”, the Decision layer declares an overall
output of Level 3: this corresponds to a [-0.1, +0.1) percent change in
the target variable.
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Figure 6 shows the overall procedure for this study. After an exploratory data
analysis, the data are converted into a quasi-stationary series through logarithmic
and differencing operators where appropriate. Next, a standardization ensures that
the values of input variables are of similar order of magnitude. Subsequently, a
discrete output is generated. The quantized output is a natural consequence of
the APN.

On the other hand, techniques such as RNN yield continuous outputs. In that
case, the output values may be discretized to ensure comparability with those
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from an APN. Finally, the output from the APN.is compared against those from
other learning techniques: BPN, RNN, and CBR.

[Figure 6] Procedure for predicting 6 Levels of bipolar movements (Up or
Down) for a stock index using probabilistic neural networks and

other learmning methods.

1. Perform exploratory data analysis (EDA): identify overall patterns and outliers.
2. Transform data for comparability.

a. Convert indices (e.g. Stock Price Index) and ratio (e.g. PI) by
logarithmic mapping:
Xy — LX; : for variable ;=1]1..[ and case j=1..J

b. Take differences to eliminate trend if appropriate
U; — DU;

c. Standardize: eliminate effects of units (of measurement) by subtracting
mean and dividing by standard deviation:
V,’j - ZV,‘/' = Z,‘j

3. Generate a multilevel classification of output patterns based on actual stock
price index.

— 6 classes of output with the following thresholds:
(-0.5%, -0.3%, -0.1%, 0.1%, 0.3%, 0.5%).
— Each threshold defines two output nodes (e.g. less than 0.1% or 0.1%

or more).

4. Apply probabilistic neural network (PNN) or other model.
— Calculate result from the model.

5. Detransform the variables.
— Analyze results.

IvV. CASE STUDY

The case study involves a bipolar prediction of Up or Down for the
Singapore stock price index. The variables of interest for this study are listed in
Table 1. The input data were daily values. The learning phase consisted of 2870
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data points from Jan. 1, 1985 to Dec. 31, 1995, while the -testing phase
consisted of 186 data points from Jan. 1, 1996 to Sep. 16, 1996. The 5 input
variables were transformed by a logarithmic transformation (L), a differencing
operation (D), and a standardization operation (Z) as appropriate.

[Table 1] Description of the original variables. The training data were daily
observations from Jan. 1, 1985 to Dec. 31, 1995; the test data from
Jan. 1, 1996 to Sep. 16, 1996.

Label Name Description

PI Stock Price Index Singapore stock price index (1980 = 100).

RI _Total Return Index Cumulative stock index return, incl. dividends.
DY Dividend Yield Dividend yield of Singapore stock market.
VO | Tumover by Volume Trading volume of Singapore stock market.
PE Price/Earnings ratio Price/Earnings ratio for the Singapore stock index.

Model construction. Figure 7 shows a temporal plot of the Singapore stock
price index. The changes in the stock price index can be categorized into
quantized classes. In particular, the current study employed an APN comprising
6 clementary PNNs. Consequently, there were 7 categories which were labeled
Levels O through 6. The class boundaries are listed in Table 2.

[Figure 7] Singapore Stock Price Index (PI).
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[Table 2] Quantized Levels of the percentage change from one period to the
next. The arrayed probabilistic network (APN) contains elementary
modules for each of Levels 1 through 6. If all forecasts are negative,
then the default decision corresponds to Level 0.

Level Range (%)
0 (- o0, -0.5% )
1 [ 05%, 0.3% ]
2 [ -03%, 0.1% ]
3 [ -0.1%, 0.1% ]
4 [ 01%, 03% ]
5
6

[ 03%, 05% ]
[ 05%, o]

Figure 8 depicts the discretized form (QFPI) of the FPI. Figure 9 plots the
actual and predicted values of the quantal change in the differenced log of the
price index (QDLPI) due to APN during the test phase. Figure 10 compares the
actual QDLPI against forecasts due to the BPN(5*15*1) model: that is, a
backpropagation model with 5 nodes in the input layer, 15 in the hidden layer,
and 1 output node. The next chart, Figure 11, compares the actual QDLPI
against forecasts from an RNN model. Figure 12 shows the actual and forecast
values of QDLPI due to CBR.

[Figure 8] Quantized fractional change (QFPI) in the Singapore Stock Price Index
over the entire timespan covering both the training and testing phases.
The categories or Levels are as follows : (-0, -0.3), [-0.3, -0.1],
[-0.1, 0.1], [0.1, 0.3], [0.3, 0.5], [0.5, co].
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[Figure 9] Actual vs. predicted values of the quantal change of the differenced log
of the stock price index (QDLPI) using APN during the test phase.
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[Figure 10] Actual vs. predicted values of the quantal change of the differenced

log of the stock price index (QDLPI) using BPN(5*15*1) during

the test phase.
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log of the stock price index (QDLPI) using RNN during the test

phase.

170
{Figure 11] Actual vs. predicted values of the quantal change of the differenced
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[Figure 13] Hit rate by Level for different leamning architectures. Level 3
corresponds to a lack of significant movement in the market index;
in this situation the fluctuations may be largely random with minor
prices changes neglecting the “lumpiness” of purchases and sales in
the market. On the other hand, Levels 1 and 6 pertain to larger
movements which are more likely to be precipitated by significant
news. Meanwhile, Levels 2 and 5 lie somewhere in the middle of
the spectrum of activity: namely, the noise of Level 3 versus the
signal of Levels 1 and 6.
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Results of study. The performance among the predictive models is presented in
Table 3. The metric of accuracy is the hit rate, or proportion of correct
forecasts.

[Table 3] Hit rate by Level among the forecasting modules. The 3 BPN models
yield comparable performance.

Level

Model 1 2 3 4 5 6
APN 0.7433 | 0.6577 | 0.6612 | 0.6344 | 0.6989 | 0.7526
CBR 0.6666 | 0.6379 | 0.5967 | 0.5967 | 0.6505 | 0.7311
RNN 07433 | 0.6524 | 0.5215 | 0.6149 | 0.6898 | 0.7540
BPN(5*10*1) 0.7433 | 0.6577 | 0.5828 | 0.6042 | 0.6898 | 0.7540
BPN(5*15*1) 0.7433 | 06577 | 05913 | 05989 | 0.6898 | 0.7540
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The patterns are easier to discen in Figure 13. It would appear that APN
exhibits the best performance overall. This proposition is supported by Table 4,
which indicates that APN is significantly better than RNN and superior to the
best BPN(5%15*%1) for Level 3 forecasts. On the other hand, Table 5 indicates
that APN is mildly superior to BPN for Level 4, but not significantly so. In
addition, the next table supports a similar conclusion concerning APN’s
superiority over CBR.

[Table 4] Tests of the difference in proportions among pairs of models for

Level 3.
Models Proportions p-value Decision
APN vs. RNN 0.6612 vs. 0.5215 0.0062 Reject Ho
APN vs. BPN(5*15*1) 0.6612 vs. 0.5913 0.1646 Reject Ho
CBR vs. RNN 0.5967 vs. 0.5215 0.1406 Accept Ho

[Table 5] Two-sample test for the difference in proportions for Level 4.

Models Proportions p-value Decision

APN vs. BPN(5*15*1) 0.6344 vs. 0.6042 0.5486 Accept Ho

[Table 6] Two-sample test for the difference in proportions for Level 5.

Proportions p-value Decision

APN vs. CBR 0.6989 vs. 0.6505 03174 Accept Ho

Unfortunately the hit rate alone is an inadequate measure of performance since
it ignores the extent of mistakes. The results of the Type I and Type II errors
for each learning model at Level 3 are readily comprehensible in the form of
Figure 14. More specifically, CBR and APN are the only models which
supercede default performance in terms of minimizing both Type I and Type II
errors. The results of the errors by model for a Level 4 change in the market
indexes are charted on Figure 15, which reveals that CBR is the only model to
outperform default prediction. Finally, the results of the errors by model for a
Level 5 change in the market is given in Figure 16. The chart shows that CBR
supercedes the other models, and in fact is the sole model with superior
performance according to mistakes of both Type 1 and Type IL
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[Figure 14] Mistake chart for Level 3 predictions. Dashed lines indicates default
mistakes based on a constant prediction of “Down” or “Up”. For
instance, Default (I) is the expected Type I emor due to a constant
“Down”. Only models
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[Figure 15] Mistake chart for Level 4 predictions. Dashed lines indicates default

mistakes based on a constant prediction of “Down” or “Up”.
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(Figure 16] Mistake chart for Level 5 predictions. Dashed lines indicates default
mistakes based on a constant prediction of “Down” or “Up”.
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In conclusion, the arrayed probabilistic network tends to outperform recurrent
and backpropagation networks. However, case based reasoning tends to supercede
the arrayed probabilistic network as well as the other techniques when mistakes
are taken into consideration.

V. FUTURE WORK

A promising direction for the future is a comprehensive strategy using
filtering and multistrategy learning. Time series data may be conditioned by
filtering methods and then injected into learning techniques to predict financial
variables.

Another direction for the future lies in the simultaneous prediction of multiple
time series. In this way, more specific forecasts can be generated by
constructing a multisector model which distinguishes among various primary,
manufacturing, and service industries.
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